76 resultados para Classes moyennes -- France
Resumo:
The skin secretion of the North American pickerel frog (Rana palustris) has long been known to have pronounced noxious/toxic properties and to be highly effective in defence against predators and against other sympatric amphibians. As it consists largely of a complex mixture of peptides, it has been subjected to systematic peptidomic study but there has been little focus on molecular cloning of peptide-encoding cDNAs and by deduction, the biosynthetic precursors that they encode. Here, we demonstrate that the cDNAs encoding the five major structural families of antimicrobial peptides can be elucidated by a single step “shotgun” cloning approach using a cDNA library constructed from the source material of the peptidomic studies—the defensive skin secretion itself. Using a degenerate primer pool designed to a highly conserved nucleic acid sequence 5' to the initiation codon of known antimicrobial peptide precursor transcripts, we amplified cDNA sequences representing five major classes of antimicrobial peptides, such as esculentins, brevinins, ranatuerins, palustrins and temporins. Bioinformatic comparisons of precursor open-reading frames and nucleic acid sequences revealed high degrees of structural similarities between analogous peptides of R. palustris and the Chinese bamboo odorous frog, Rana versabilis. This approach thus constitutes a robust technique that can be used either alone or ideally, in parallel with peptidomic analysis of skin secretion, to rapidly extract primary structural information on amphibian skin secretion peptides and their biosynthetic precursors.