186 resultados para Clarinet music.
Resumo:
Analysis of the acoustical functioning of musical instruments invariably involves the estimation of model parameters. The broad aim of this paper is to develop methods for estimation of clarinet reed parameters that are representative of actual playing conditions. This presents various challenges because of the di?culties of measuring the directly relevant variables without interfering with the control of the instrument. An inverse modelling approach is therefore proposed, in which the equations governing the sound generation mechanism of the clarinet
are employed in an optimisation procedure to determine the reed parameters from the mouthpiece pressure and volume ?ow signals. The underlying physical model captures most of the reed dynamics and is simple enough to be used in an inversion process. The optimisation procedure is ?rst tested by applying it to numerically synthesised signals, and then applied to mouthpiece signals acquired during notes blown by a human player. The proposed inverse modelling approach raises the possibility of revealing information about the way in which the embouchure-related reed parameters are controlled by the player, and also facilitates physics-based re-synthesis of clarinet sounds.
The Joy of Mourning: Resacralizing 'the Sacred' Music of Yolngu Christianity and Aboriginal Theology
Resumo:
A method for simulation of acoustical bores, useful in the context of sound synthesis by physical modeling of woodwind instruments, is presented. As with previously developed methods, such as digital waveguide modeling (DWM) [Smith, Comput. Music J. 16, pp 74-91 (1992)] and the multi convolution algorithm (MCA) [Martinez et al., J. Acoust. Soc. Am. 84, pp 1620-1627 (1988)], the approach is based on a one-dimensional model of wave propagation in the bore. Both the DWM method and the MCA explicitly compute the transmission and reflection of wave variables that represent actual traveling pressure waves. The method presented in this report, the wave digital modeling (WDM) method, avoids the typical limitations associated with these methods by using a more general definition of the wave variables. An efficient and spatially modular discrete-time model is constructed from the digital representations of elemental bore units such as cylindrical sections, conical sections, and toneholes. Frequency-dependent phenomena, such as boundary losses, are approximated with digital filters. The stability of a simulation of a complete acoustic bore is investigated empirically. Results of the simulation of a full clarinet show that a very good concordance with classic transmission-line theory is obtained.