2 resultados para Cell permeability
Resumo:
Cysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates. The synthesis and characterisation of a cell permeable ABP to report on intracellular CTSS activity is reported. The ABP, Z-PraVG-DMK, a modified peptidyl diazomethylketone, was based on the N-terminus of human cystatin motif (Leu-Val-Gly). The leucine residue was substituted for the alkyne-bearing proparcylglycine to facilitate conjugation of an azide-tagged reporter group using click chemistry, following irreversible inhibition of CTSS. When incubated with viable Human Embryonic Kidney 293 cells, Z-PraVG-DMK permitted disclosure of CTSS activity following cell lysis and rhodamine azide conjugation, by employing standard click chemistry protocols. Furthermore, the fluorescent tag facilitated direct detection of CTSS using in-gel fluorescent scanning, obviating the necessity for downstream biotin-streptavidin conjugation and detection procedures.
Resumo:
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm.