74 resultados para Cation exchanged
Resumo:
Zeolites exchanged with transition metal cations Co2+, Mn2+, Zn2+ and Cu2+ are capable of storing and delivering a large quantity of nitric oxide in a range of 1.2-2.7 mmolg(-1). The metal ion exchange impacts the pore volumes of zeolite FAU more significantly than LTA. The storage of NO mainly involves coordination of NO to metal cation sites. By exposing zeolites to a moisture atmosphere, the stored nitric oxide can be released. The NO release takes more than 2 hours for the NO concentration decreasing below similar to 5ppb in outlet gas. Its release rate can be controlled by tailoring zeolite frameworks and optimising release conditions.
Resumo:
Voltammetric studies of the reduction of oxygen in the room temperature ionic liquid [C(4)dmim][N(Tf)(2)] have revealed a significant positive shift in the back peak potential, relative to that expected for a simple electron transfer. This shift is thought to be due to the strong association of the electrogenerated superoxide anion with the solvent cation. In this work we quantitatively simulate the microdisc electrode voltammetry using a model based upon a one-electron reduction followed by a reversible chemical step, involving the formation of the [C(4)dmim](+)center dot center dot center dot O-2(center dot-) ion-pair, and in doing so we extract a set of parameters completely describing the system. We have simulated the voltammetry in the absence of a following chemical step and have shown that it is impossible to simultaneously fit both the forward and reverse peaks. To further support the parameters extracted from fitting the experimental voltammetry, we have used these parameters to independently simulate the double step chronoamperometric response and found excellent agreement. The parameters used to describe the association of the O-2(center dot-) with the [C(4)dmim](+) were k(f) = 1.4 x 10(3) s(-1) for the first-order rate constant and K-eq = 25 for the equilibrium constant.
Resumo:
Mid-to-late Holocene high-resolution testate amoebae-derived water table reconstructions from two peatlands in the North of Ireland are presented. The proxy climate records are dated and correlated using a combination of AMS 14C dating, spheroidal carbonaceous particles and tephrochronology. The reconstructions start prior to the Hekla 4 tephra isochron (2395–2279 BC) and thus span the last ~4500 years. The records are compiled by the process of tuning within chronological errors, standardisation and stacking. Comparisons are made to existing palaeoclimate records from peatlands in Northern Britain and Ireland and the compiled lake-level record for mid-latitude Europe. Four coherent dry phases are identified in the records at ca 1150–800 BC, 320 BC–AD 150, AD 250–470 and AD 1850–2000. Recent research has shown that peat-derived water table reconstructions reflect summer water deficit and therefore the dry phases are interpreted as periods with a higher frequency and/or greater magnitudes of summer drought. These ‘drought phases’ occur during periods of relatively low 14C production, which may add support to the hypothesis of persistent solar forcing of climate change during the Holocene. Any relationship with the North Atlantic stacked drift ice record is less clear. © 2009 Elsevier Ltd. All rights reserved.