44 resultados para Carbohydrate physiology
Resumo:
Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.
Resumo:
We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to Muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to + 20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4(.)1 mu M). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome Muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Furthermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 mu M) or ryanodine (10 mu M). These data suggest that voltage-operated Ca2+ channels docontribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.
Resumo:
Objective: To examine the association between dietary glycemic index (GI), glycemic load (GL), total carbohydrate, sugars, starch, and fiber intakes and the risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma.
Methods: In an all-Ireland study, dietary information was collected from patients with esophageal adenocarcinoma (n = 224), long-segment Barrett’s esophagus (n = 220), reflux esophagitis (n = 219), and population-based controls (n = 256). Multiple logistic regression analysis examined the association between dietary variables and disease risk by tertiles of intake and as continuous variables, while adjusting for potential confounders.
Results: Reflux esophagitis risk was positively associated with starch intake and negatively associated with sugar intake. Barrett’s esophagus risk was significantly reduced in people in the highest versus the lowest tertile of fiber intake (OR 0.44 95%CI 0.25–0.80). Fiber intake was also associated with a reduced risk of esophageal adenocarcinoma, as was total carbohydrate intake (OR 0.45 95%CI 0.33–0.61 per 50 g/d increase). However, an increased esophageal adenocarcinoma risk was detected per 10 unit increase in GI intake (OR 1.42 95%CI 1.07–1.89).
Conclusions: Our findings suggest that fiber intake is inversely associated with Barrett’s esophagus and esophageal adenocarcinoma risk. Esophageal adenocarcinoma risk is inversely associated with total carbohydrate consumption but positively associated with high GI intakes.
Resumo:
A number of reports have suggested that many of the problems currently associated with the use of microneedle (MN) arrays for transdermal drug delivery could be addressed by using drug-loaded MN arrays prepared by moulding hot melts of carbohydrate materials.
Resumo:
OBJECTIVE Low-fat hypocaloric diets reduce insulin resistance and prevent type 2 diabetes in those at risk. Low-carbohydrate, high-fat diets are advocated as an alternative, but reciprocal increases in dietary fat may have detrimental effects on insulin resistance and offset the benefits of weight reduction.
RESEARCH DESIGN AND METHODS We investigated a low-fat (20% fat, 60% carbohydrate) versus a low-carbohydrate (60% fat, 20% carbohydrate) weight reduction diet in 24 overweight/obese subjects ([mean ± SD] BMI 33.6 ± 3.7 kg/m2, aged 39 ± 10 years) in an 8-week randomized controlled trial. All food was weighed and distributed, and intake was calculated to produce a 500 kcal/day energy deficit. Insulin action was assessed by the euglycemic clamp and insulin secretion by meal tolerance test. Body composition, adipokine levels, and vascular compliance by pulse-wave analysis were also measured.
RESULTS Significant weight loss occurred in both groups (P < 0.01), with no difference between groups (P = 0.40). Peripheral glucose uptake increased, but there was no difference between groups (P = 0.28), and suppression of endogenous glucose production was also similar between groups. Meal tolerance–related insulin secretion decreased with weight loss with no difference between groups (P = 0.71). The change in overall systemic arterial stiffness was, however, significantly different between diets (P = 0.04); this reflected a significant decrease in augmentation index following the low-fat diet, compared with a nonsignificant increase within the low-carbohydrate group.
CONCLUSIONS This study demonstrates comparable effects on insulin resistance of low-fat and low-carbohydrate diets independent of macronutrient content. The difference in augmentation index may imply a negative effect of low-carbohydrate diets on vascular risk.
Resumo:
This report summarises a workshop convened by the UK Food Standards Agency (FSA) on 14 October 2008 to discuss current FSA-funded research on carbohydrates and cardiovascular health. The objective of this workshop was to discuss the results of recent research and to identify any areas which could inform future FSA research calls. This workshop highlighted that the FSA is currently funding some of the largest, well-powered intervention trials investigating the type of fat and carbohydrate, whole grains and fruit and vegetables, on various CVD risk factors. Results of these trials will make a substantive contribution to the evidence on diet and cardiovascular risk.