30 resultados para Canopy cover
Resumo:
The role of limpet grazing in preventing the development of algal canopies is a recurrent theme in intertidal ecology. Less is known about interactions of limpets with the long-term dynamics of established canopies. Aerial photographs indicate that intertidal canopy cover has declined over the past 44 yr in Strangford Lough, Northern Ireland. There has been a loss of the previously continuous cover of Ascophyllum nodosum (L.) Le Jolis in the mid-shore. A barnacles dominated assemblage now fills gaps in the A. nodosum canopy. The rates at which barnacle patches become established and grow have increased since 1990. Changes in canopy cover have been accompanied by increases in limpet densities since the 1980s. Measurements between 2003 and 2004 showed no increase in length of A. nodosum fronds when limpets Patella vulgata had access to the algal holdfasts. In contrast, when limpets were experimentally excluded from the holdfasts, there was net frond growth. In the Isle of Man, which is climatically similar to Strangford Lough but has fewer limpets, growth occurred regardless of limpet grazing. The breaking force for A. nodosum declined with increasing local densities of limpets. A. nodosum is a sheltered shore species, potentially vulnerable to changes in wave exposure. There is no evidence, however, that Strangford Lough has become windier over the past 3 decades. Variation in wave exposure among locations within the lough was not related to rates of barnacle patch creation or expansion, Limpet population density has increased following a series of mild winters. Climate change may have a role in causing canopy loss, not by direct effects on the limpet populations.
Resumo:
This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.
Resumo:
The effects of repeated survey and fieldwork timing on data derived from a recently proposed standard field methodology for empirical estimation of Relative Pollen Productivity have been tested. Seasonal variations in vegetation and associated pollen assemblages were studied in three contrasting cultural habitat types; semi-natural ancient woodlands, lowland heaths, and unimproved, traditionally managed hay meadows. Results show that in woodlands and heathlands the standard method generates vegetation data with a reasonable degree of similarity throughout the field season, though in some instances additional recording of woodland canopy cover should be undertaken, and differences were greater for woodland understorey taxa than for arboreal taxa. Large differences in vegetation cover were observed over the field season in the grassland community, and matching the phenological timing of surveys within and between studies is clearly important if RPP estimates from these sites are to be comparable. Pollen assemblages from closely co-located moss polsters collected on different visits are shown to be variable in all communities, to a greater degree than can be explained by the sampling error associated with pollen counting, and further study of moss polsters as pollen traps is recommended.