4 resultados para COUP Transcription Factor I
Resumo:
Fluorescence in situ hybridization (FISH) for FOXO1 gene rearrangement and reverse transcription-polymerase chain reaction (PCR) for PAX3/7-FOXO1 fusion transcripts have become routine ancillary tools for the diagnosis of alveolar rhabdomyosarcomas (ARMS). Here we summarize our experience of these adjunct diagnostic modalities at a tertiary center, presenting the largest comparative series of FISH and PCR for suspected or possible ARMS to date. All suspected or possible ARMS tested by FISH or PCR for FOXO1 rearrangement or PAX3/7-FOXO1 fusion transcripts over a 7-year period were included. FISH and PCR results were correlated with clinical and histologic findings. One hundred samples from 95 patients had FISH and/or PCR performed. FISH had higher rates of technical success (96.8 %) compared with PCR (88 %). Where both tests were utilized successfully, there was high concordance rate between them (94.9 %). In 24 histologic ARMS tested for FISH or PCR, 83.3 % were translocation-positive (all for PAX3-FOXO1 by PCR) and included 3 histologic solid variants. In 76 cases where ARMS was excluded, there were 3 potential false-positive cases with FISH but none with PCR. PCR had similar sensitivity (85.7 %) and better specificity (100 %) in aiding the diagnosis of ARMS, compared with FISH (85 and 95.8 %, respectively). All solid variant ARMS harbored FOXO1 gene rearrangements and PAX3-FOXO1 ARMS were detected to the exclusion of PAX7-FOXO1. In comparative analysis, both FISH and PCR are useful in aiding the diagnosis of ARMS and excluding its sarcomatous mimics. FISH is more reliable technically but has less specificity than PCR. In cases where ARMS is in the differential diagnosis, it is optimal to perform both PCR and FISH: both have similar sensitivities for detecting ARMS, but FISH may confirm or exclude cases that are technically unsuccessful with PCR, while PCR can detect specific fusion transcripts that may be useful prognostically.
Resumo:
To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.
Resumo:
Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.