2 resultados para CONTINUOUS-PHASE-PLATE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing number of empirical studies are challenging the central fundamentals on which the classical soil food web model is built. This model assumes that bacteria consume labile substrates twice as fast as fungi, and that mycorrhizal fungi do not decompose organic matter. Here, we build on emerging evidence that points to significant consumption of labile C by fungi, and to the ability of ectomycorrhizal fungi to decompose organic matter, to show that labile C constitutes a major and presently underrated source of C for the soil food web. We use a simple model describing the dynamics of a recalcitrant and a labile C pool and their consumption by fungi and bacteria to show that fungal and bacterial populations can coexist in a stable state with large inputs into the labile C pool and a high fungal use of labile C. We propose a new conceptual model for the bottom trophic level of the soil food web, with organic C consisting of a continuous pool rather than two or three distinct pools, and saprotrophic fungi using substantial amounts of labile C. Incorporation of these concepts will increase our understanding of soil food web dynamics and functioning under changing conditions.