3 resultados para CONSTANT HAZARD
Resumo:
This article introduces the concept of an emerging shared austerity reality, which refers to the socio-economic context of austerity that is shared both by social workers and service users, albeit to different degrees. Traditionally, the concept of the shared reality has been utilized to encompass the experiences of welfare professionals working in situations where both they and service users are exposed to the adverse effects of a natural disaster, war or terrorist attack. Here, the concept of shared reality is expanded through the introduction of the context of austerity. Drawing on 21 in-depth interviews with public sector social work practitioners in Greece it discusses, among other things, social anxieties about their children’s future, and their inability to take care of their elderly relatives that suggest an emerging shared austerity reality, reflecting the deterioration of socio-economic conditions. The paper ends with a discussion about the possibilities of alliance and division that emerge from the concept and future research directions. Moreover, it concludes with a reflection on the role of the social work profession and recent political developments in Greece in anti-austerity struggles.
Resumo:
Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied gas with internal heat generation is studied analytically in this work. The study is performed by analysing the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) conditions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside the porous material is modelled by the Darcy–Brinkman equation. Exact solutions are obtained for both the fluid and solid temperature distributions for two primary approaches models A and B using constant wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and B are compared, and the limiting cases resulting in the convergence or divergence of the two models are also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid internal heat generations are also discussed. The results indicate that the Nusselt number decreases with the increase of thermal conductivity ratio for both models. This contrasts results from previous studies which for model A reported that the Nusselt number increases with the increase of thermal conductivity ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers calculated using model A change drastically with the variation of solid internal heat generation. In contrast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both models. The difference between the Nusselt numbers calculated using the two models decreases with an increase of the temperature jump coefficient.
Resumo:
Not Available