19 resultados para COLORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Color plays an important biological role in the lives of many animals, with some species exhibiting preferences for certain colors over others. This study explored the color preferences of two species of ape, which, like humans, possess trichromatic color vision. Six western lowland gorillas, and six chimpanzees, housed in Belfast Zoological Gardens, were exposed to three stimuli (cloths, boxes, sheets of acetate) in red, blue, and green. Six stimuli of the same nature, in each of the three colors, were provided to both species for 5 days per stimulus. The amount of interest that the animals showed toward each stimulus of each color was recorded for 1 hr. Results showed that the apes, both when analyzed as two separate groups, and when assessed collectively, showed significant color preferences, paying significantly less attention to the red-, than to the blue- or green-colored stimuli. The animals' interest in the blue- and green-colored stimuli did not differ significantly. Overall, the findings suggest that gorillas and chimpanzees, our closest living relatives, may harbor color preferences comparable to those of humans and other species. © 2008 American Psychological Association.


--------------------------------------------------------------------------------

Reaxys Database Information|

--------------------------------------------------------------------------------

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE:
To elucidate the contribution of environmental versus genetic factors to the significant losses in visual function associated with normal aging.
DESIGN:
A classical twin study.
PARTICIPANTS:
Forty-two twin pairs (21 monozygotic and 21 dizygotic; age 57-75 years) with normal visual acuity recruited through the Australian Twin Registry.
METHODS:
Cone function was evaluated by establishing absolute cone contrast thresholds to flicker (4 and 14 Hz) and isoluminant red and blue colors under steady state adaptation. Adaptation dynamics were determined for both cones and rods. Bootstrap resampling was used to return robust intrapair correlations for each parameter.
MAIN OUTCOME MEASURES:
Psychophysical thresholds and adaptational time constants.
RESULTS:
The intrapair correlations for all color and flicker thresholds, as well as cone absolute threshold, were significantly higher in monozygotic compared with dizygotic twin pairs (P<0.05). Rod absolute thresholds (P = 0.28) and rod and cone recovery rate (P = 0.83; P = 0.79, respectively) did not show significant differences between monozygotic and dizygotic twins in their intrapair correlations, indicating that steady-state cone thresholds and flicker thresholds have a marked genetic contribution, in contrast with rod thresholds and adaptive processes, which are influenced more by environmental factors over a lifetime.
CONCLUSIONS:
Genes and the environment contribute differently to important neuronal processes in the retina and the role they may play in the decline in visual function as we age. Consequently, retinal structures involved in rod thresholds and adaptive processes may be responsive to appropriate environmental manipulation. Because the functions tested are commonly impaired in the early stages of age-related macular degeneration, which is known to have a multifactorial etiology, this study supports the view that pathogenic pathways early in the disease may be altered by appropriate environmental intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes similar to -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by Ni-56, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the identification of a source coincident with the position of the nearby Type II-P supernova (SN) 2008bk in high-quality optical and near-infrared preexplosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared preexplosion images is identified to within about +/- 70 and +/- 40 mas, respectively, using postexplosion-band images obtained with the NAOS CONICA adaptive optics system K-s on the VLT. The preexplosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colors and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +/- 1.0 M-circle dot.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present optical (UBVRI) and near-IR (YJHK) photometry of the normal Type Ia supernova (SN) 2004S. We also present eight optical spectra and one near-IR spectrum of SN 2004S. The light curves and spectra are nearly identical to those of SN 2001el. This is the first time we have seen optical and IR light curves of two Type Ia SNe match so closely. Within the one parameter family of light curves for normal Type Ia SNe, that two objects should have such similar light curves implies that they had identical intrinsic colors and produced similar amounts of Ni-56. From the similarities of the light-curve shapes we obtain a set of extinctions as a function of wavelength that allows a simultaneous solution for the distance modulus difference of the two objects, the difference of the host galaxy extinctions, and RV. Since SN 2001el had roughly an order of magnitude more host galaxy extinction than SN 2004S, the value of R-V = 2.15(-0.22)(+0.24) pertains primarily to dust in the host galaxy of SN 2001el. We have also shown via Monte Carlo simulations that adding rest-frame J-band photometry to the complement of BVRI photometry of Type Ia SNe decreases the uncertainty in the distance modulus by a factor of 2.7. A combination of rest-frame optical and near-IR photometry clearly gives more accurate distances than using rest-frame optical photometry alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a multi-camera application capable of processing high resolution images and extracting features based on colors patterns over graphic processing units (GPU). The goal is to work in real time under the uncontrolled environment of a sport event like a football match. Since football players are composed for diverse and complex color patterns, a Gaussian Mixture Models (GMM) is applied as segmentation paradigm, in order to analyze sport live images and video. Optimization techniques have also been applied over the C++ implementation using profiling tools focused on high performance. Time consuming tasks were implemented over NVIDIA's CUDA platform, and later restructured and enhanced, speeding up the whole process significantly. Our resulting code is around 4-11 times faster on a low cost GPU than a highly optimized C++ version on a central processing unit (CPU) over the same data. Real time has been obtained processing until 64 frames per second. An important conclusion derived from our study is the scalability of the application to the number of cores on the GPU. © 2011 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute magnitude (H) of an asteroid is a fundamental parameter describing the size and the apparent brightness of the body. Because of its surface shape, properties and changing illumination, the brightness changes with the geometry and is described by the phase function governed by the slope parameter (G). Although many years have been spent on detailed observations of individual asteroids to provide H and G, vast majority of minor planets have H based on assumed G and due to the input photometry from multiple sources the errors of these values are unknown. We compute H of ~ 180 000 and G of few thousands asteroids observed with the Pan-STARRS PS1 telescope in well defined photometric systems. The mean photometric error is 0.04 mag. Because on average there are only 7 detections per asteroid in our sample, we employed a Monte Carlo (MC) technique to generate clones simulating all possible rotation periods, amplitudes and colors of detected asteroids. Known asteroid colors were taken from the SDSS database. We used debiased spin and amplitude distributions dependent on size, spectral class distributions of asteroids dependent on semi-major axis and starting values of G from previous works. H and G (G12 respectively) were derived by phase functions by Bowell et al. (1989) and Muinonen et al. (2010). We confirmed that there is a positive systematic offset between H based on PS1 asteroids and Minor Planet Center database up to -0.3 mag peaking at 14. Similar offset was first mentioned in the analysis of SDSS asteroids and was believed to be solved by weighting and normalizing magnitudes by observatory codes. MC shows that there is only a negligible difference between Bowell's and Muinonen's solution of H. However, Muinonen's phase function provides smaller errors on H. We also derived G and G12 for thousands of asteroids. For known spectral classes, slope parameters agree with the previous work in general, however, the standard deviation of G in our sample is twice as larger, most likely due to sparse phase curve sampling. In the near future we plan to complete the H and G determination for all PS1 asteroids (500,000) and publish H and G values online. This work was supported by NASA grant No. NNX12AR65G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the study of absolute magnitude (H) and slope parameter (G) of 170,000 asteroids observed by the Pan-STARRS1 telescope during the period of 15 months within its 3-year all-sky survey mission. The exquisite photometry with photometric errors below 0.04 mag and well-defined filter and photometric system allowed to derive H and G with statistical and systematic errors. Our new approach lies in the Monte Carlo technique simulating rotation periods, amplitudes, and colors, and deriving most-likely H, G and their systematic errors. Comparison of H_M by Muinonen's phase function (Muinonen et al., 2010) with the Minor Planet Center database revealed a negative offset of 0.22±0.29 meaning that Pan-STARRS1 asteroids are fainter. We showed that the absolute magnitude derived by Muinonen's function is systematically larger on average by 0.14±0.29 and by 0.30±0.16 when assuming fixed slope parameter (G=0.15, G_{12}=0.53) than Bowell's absolute magnitude (Bowell et al., 1989). We also derived slope parameters of asteroids of known spectral types and showed a good agreement with the previous studies within the derived uncertainties. However, our systematic errors on G and G_{12} are significantly larger than in previous work, which is caused by poor temporal and phase coverage of vast majority of the detected asteroids. This disadvantage will vanish when full survey data will be available and ongoing extended and enhanced mission will provide new data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ∼0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 ± 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w = -1.120+0.360-0.206(Stat)+0.269-0.291(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H0 measurements, we find w = -1.166+0.072-0.069 and Ωm = 0.280+0.013-0.012 (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = -1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: wBAO+H0+SN+WMAP = -1.124+0.083-0.065.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t1/2) of less than 12 days and -16.5 > M > -20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (gP1-rP1 ≲ -0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043erg s-1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr-1Gpc-3(4%-7% of the core-collapse SN rate at z = 0.2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only 0.002 M, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.