7 resultados para CO OXIDATION ACTIVITY


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The initial rate of the photocatalysed oxidation of methylene blue, MB, by dissolved oxygen in solution, ri(MB), is measured for a series of titania on glass samples exhibiting a wide range of activities.  The samples used include two different types of commercial self-cleaning glass and a lab-made sol-geltitania film.  The activities of these samples are also assessed using a resazurin-based photocatalyst activity indicator ink, i.e. Rz paii, for which the initial rates of the photocatalysed reduction of Rz were measured, ri(Rz).  A plot of ri(MB)vs. ri(Rz) reveals a goodstraight line, thereby demonstrating a linear correlation (for TiO2films on glass at least) between the slow (usually hours) photocatalysed oxidation of organic materials, such as MB, and the fast (typically minutes) photocatalysed irreversible reduction of a dye, like Rz, in a paii.  The possible use of paii technology for assessing, in a simple, quick and inexpensive manner, photocatalytic films both in the laboratory and in situ is discussed briefly.  

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Baeyer–Villiger oxidation of cyclic ketones, using H2O2 as the oxidising agent, was systematically studied using a range of metal chlorides in different solvents, and in neat chlorogallate(III) ionic liquids. The extremely high activity of GaCl3 in promoting oxidation with H2O2, irrespective of solvent, was reported for the first time. The activity of all other metal chlorides was strongly solvent-dependent. In particular, AlCl3 was very active in a protic solvent (ethanol), and tin chlorides, SnCl4 and SnCl2, were active in aprotic solvents (toluene and dioxane). In order to eliminate the need for volatile organic solvent, a Lewis acidic chlorogallate(III) ionic liquid was used in the place of GaCl3, which afforded typically 89–94% yields of lactones in 1–120 min, at ambient conditions. Raman and 71Ga NMR spectroscopic studies suggest that the active species, in both GaCl3 and chlorogallate(III) ionic liquid systems, are chlorohydroxygallate(III) anions, [GaCl3OH]−, which are the products of partial hydrolysis of GaCl3 and chlorogallate(III) anions; therefore, the presence of water is crucial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for assessing the activity of a powdered water oxidation catalyst (WOC) is described, utilising an easily-prepared wireless rotating disc electrode of the WOC, thereby allowing its activity to be probed, via the observed kinetics of water oxidation by Ce(IV) ions, and so provide invaluable electrochemical information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium, platinum bimetallic catalysts supported on η-Al2O3, ZSM-5(23) and ZSM-5(80), with and without the addition of TiO2, were prepared and used for low temperature total methane oxidation (TMO). The catalysts were tested under reaction temperatures of 200-500 °C with a GHSV of 100,000 mL g-1 h-1. It was found that all four components, palladium, platinum, an acidic support and oxygen carrier were needed to achieve a highly active and stable catalyst. The optimum support being 17.5% TiO2 on ZSM-5(80) where the T10% was observed at only 200 °C. On addition of platinum, longer time on stream experiments showed no decrease in the catalyst activity over 50 h at 250 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the bifunctional mechanism on PtSn catalyst. The positive influence of Sn was also confirmed in the PtSn nanoparticle catalyst prepared by the modification of commercial Pt/C nanoparticle and a higher activity was observed for PtSn (3:1) composition. The temperature-dependent data showed that the activation energy for butanol oxidation reaction over PtSn/C is lower than that over Pt/C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-performance and low-cost bifunctional electrocatalysts play crucial roles in oxygen reduction and evolution reactions. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon nanofiber networks (denoted as CoO@N/S-CNF) through a facile approach. The carbon nanofiber networks were derived from a nanostructured biological material which provided abundant functional groups to nucleate and anchor nanoparticles while retaining its interconnected 3D porous structure. The composite possesses a high specific surface area and graphitization degree, which favors both mass transport and charge transfer for electrochemical reaction. The CoO@N/S-CNF not only exhibits highly efficient catalytic activity towards oxygen reduction reaction (ORR) in alkaline media with an onset potential of about 0.84 V, but also shows better stability and stronger resistance to methanol than Pt/C. Furthermore, it only needs an overpotential of 1.55 V to achieve a current density of 10 mA cm-2, suggesting that it is an efficient electrocatalyst for oxygen evolution reaction (OER). The ΔE value (oxygen electrode activity parameter) of CoO@N/S-CNF is calculated to be 0.828 V, which demonstrates that the composite could be a promising bifunctional electrocatalyst for both ORR and OER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma.