7 resultados para CLINICAL-IMPLICATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Deletions of chromosome 1 have been described in 7% to 40% of cases of myeloma with inconsistent clinical consequences. CDKN2C at 1p32.3 has been identified in myeloma cell lines as the potential target of the deletion. We tested the clinical impact of 1p deletion and used high-resolution techniques to define the role of CDKN2C in primary patient material.Experimental Design: We analyzed 515 cases of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and newly diagnosed multiple myeloma using fluorescence in situ hybridization (FISH) for deletions of CDKN2C. In 78 myeloma cases, we carried out Affymetrix single nucleotide polymorphism mapping and U133 Plus 2.0 expression arrays. In addition, we did mutation, methylation, and Western blotting analysis.Results: By FISH we identified deletion of 1p32.3 (CDKN2C) in 3 of 66 MGUS (4.5%), 4 of 39 SMM (10.3%), and 55 of 369 multiple myeloma cases (15%). We examined the impact of copy number change at CDKN2C on overall survival (OS), and found that the cases with either hemizygous or homozygous deletion of CDKN2C had a worse OS compared with cases that were intact at this region (22 months versus 38 months; P = 0.003). Using gene mapping we identified three homozygous deletions at 1p32.3, containing CDKN2C, all of which lacked expression of CDKN2C. Cases with homozygous deletions of CDKN2C were the most proliferative myelomas, defined by an expression-based proliferation index, consistent with its biological function as a cyclin-dependent kinase inhibitor.Conclusions: Our results suggest that deletions of CDKN2C are important in the progression and clinical outcome of myeloma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DH-JH rearrangements of the Ig heavy-chain gene (IGH) occur early during B-cell development. Consequently, they are detected in precursor-B-cell acute lymphoblastic leukemias both at diagnosis and relapse. Incomplete DJH rearrangements have also been occasionally reported in mature B-cell lymphoproliferative disorders, but their frequency and immunobiological characteristics have not been studied in detail. We have investigated the frequency and characteristics of incomplete DJH as well as complete VDJH rearrangements in a series of 84 untreated multiple myeloma (MM) patients. The overall detection rate of clonality by amplifying VDJH and DJH rearrangements using family-specific primers was 94%. Interestingly, we found a high frequency (60%) of DJH rearrangements in this group. As expected from an immunological point of view, the vast majority of DJH rearrangements (88%) were unmutated. To the best of our knowledge, this is the first systematic study describing the incidence of incomplete DJH rearrangements in a series of unselected MM patients. These results strongly support the use of DJH rearrangements as PCR targets for clonality studies and, particularly, for quantification of minimal residual disease by real-time quantitative PCR using consensus JH probes in MM patients. The finding of hypermutation in a small proportion of incomplete DJH rearrangements (six out of 50) suggests important biological implications concerning the process of somatic hypermutation. Moreover, our data offer a new insight in the regulatory development model of IGH rearrangements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Mounting evidence supports the clinical significance of gene mutations and immunogenetic features in common mature B-cell malignancies.

Experimental Design: We undertook a detailed characterization of the genetic background of splenic marginal zone lymphoma (SMZL), using targeted resequencing and explored potential clinical implications in a multinational cohort of 175 patients with SMZL.

Results: We identified recurrent mutations in TP53 (16%), KLF2 (12%), NOTCH2 (10%), TNFAIP3 (7%), MLL2 (11%), MYD88 (7%), and ARID1A (6%), all genes known to be targeted by somatic mutation in SMZL. KLF2 mutations were early, clonal events, enriched in patients with del(7q) and IGHV1-2*04 B-cell receptor immunoglobulins, and were associated with a short median time to first treatment (0.12 vs. 1.11 years; P = 0.01). In multivariate analysis, mutations in NOTCH2 [HR, 2.12; 95% confidence interval (CI), 1.02–4.4; P = 0.044] and 100% germline IGHV gene identity (HR, 2.19; 95% CI, 1.05–4.55; P = 0.036) were independent markers of short time to first treatment, whereas TP53 mutations were an independent marker of short overall survival (HR, 2.36; 95 % CI, 1.08–5.2; P = 0.03).

Conclusions: We identify key associations between gene mutations and clinical outcome, demonstrating for the first time that NOTCH2 and TP53 gene mutations are independent markers of reduced treatment-free and overall survival, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Eighty per cent of Malawi's 8 million children live in rural areas, and there is an extensive tiered health system infrastructure from village health clinics to district hospitals which refers patients to one of the four central hospitals. The clinics and district hospitals are staffed by nurses, non-physician clinicians and recently qualified doctors. There are 16 paediatric specialists working in two of the four central hospitals which serve the urban population as well as accepting referrals from district hospitals. In order to provide expert paediatric care as close to home as possible, we describe our plan to task share within a managed clinical network and our hypothesis that this will improve paediatric care and child health.

PRESENTATION OF THE HYPOTHESIS: Managed clinical networks have been found to improve equity of care in rural districts and to ensure that the correct care is provided as close to home as possible. A network for paediatric care in Malawi with mentoring of non-physician clinicians based in a district hospital by paediatricians based at the central hospitals will establish and sustain clinical referral pathways in both directions. Ultimately, the plan envisages four managed paediatric clinical networks, each radiating from one of Malawi's four central hospitals and covering the entire country. This model of task sharing within four hub-and-spoke networks may facilitate wider dissemination of scarce expertise and improve child healthcare in Malawi close to the child's home.

TESTING THE HYPOTHESIS: Funding has been secured to train sufficient personnel to staff all central and district hospitals in Malawi with teams of paediatric specialists in the central hospitals and specialist non-physician clinicians in each government district hospital. The hypothesis will be tested using a natural experiment model. Data routinely collected by the Ministry of Health will be corroborated at the district. This will include case fatality rates for common childhood illness, perinatal mortality and process indicators. Data from different districts will be compared at baseline and annually until 2020 as the specialists of both cadres take up posts.

IMPLICATIONS OF THE HYPOTHESIS: If a managed clinical network improves child healthcare in Malawi, it may be a potential model for the other countries in sub-Saharan Africa with similar cadres in their healthcare system and face similar challenges in terms of scarcity of specialists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mevalonate pathway is of important clinical, pharmaceutical and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of GHMP kinase superfamily, but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals.