23 resultados para CHEMICAL PREPARATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of routes to hydroxyiminodehydroquinate, one of the most potent inhibitors of type II dehydroquinase that is currently known, have been investigated. Methods based on the existing literature synthesis, i.e. oxime formation of a suitably C-4 and C-5 protected methyl 3-dehydroquinate derivative were initially studied. Benzoyl protection did give the desired product but in low overall yield. An alternative BBA protection strategy starting with a protected dehydroquinate was successful in generating a C4/C5 analogue of the desired oxime in high yield. Further investigation revealed that it was unecessary to protect the dehydroquinate precursor, hence the potassium salt corresponding to the desired oxime was simply synthesised as a single isomer from methyl dehydroquinate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with removal of Cesium (radioactive waste) in dilute aqueous phase by adsorption. Fullers earth was used as an adsorbent. The adsorption capacity of Fullers earth with respect to Cesium was found to be high, 26.3 mg / g of adsorbent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic absorption spectroscopy of the ionic liquid 1-ethyl-3-methylimidazolium ethanoate ([emim](2)[O2CMe]), prepared according to International Patent WO 96/18459, showed it to contain large amounts of lead impurity: (ca. 0.5 M): [emim](2)[Pb(O2CMe)(4)] was isolated and shown crystallographically to contain the first known example of a monomeric, homoleptic pentacoordinate lead(ii) carboxylate complex, with a stereochemically active lone-pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Labelling of silica grains and energy dispersive X-ray spectroscopy (EDX) in a TEM-FEG (field emission gun) were used to demonstrate the migration of Pt(NH3)(4)(2+) species from one grain to another during Pt/SiO2 catalyst preparation by the ion-exchange procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhodium(II) acetate-catalyzed reaction of Et 2-diazo-2-diethoxyphosphorylate, EtO2CC(:N2)PO(OEt)2, with carbamates, amides, ureas or anilines gives a range of N-substituted 2-amino-2-diethoxyphosphorylacetates, EtO2CCH(NHR1)PO(OEt)2 (where R1 = Boc, Cbz, acetyl, propionyl, pivaloyl, n-Pr, Ph and substituted Ph groups), by N-H insertion reaction of the intermediate rhodium carbenoid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rh(II) acetate-catalyzed decompn. of diazophenylacetates PhC(N2)CO2Me 1 and PhC(N2)CO2R* 3 [R*OH = (-)-borneol, (+)-menthol, (-)-8-phenylmenthol] in the presence of a range of N-H compds. results in an N-H insertion reaction of the intermediate carbenoids and formation of N-substituted phenylglycine derivs. PhCH(NR1R2)CO2Me 2 [R1 = R2 = Et; R1 = 4-MeOC6H4, COCH2CHMe2, CO2CH2Ph, (S)-CH(CO2Me)CH2Ph, (S)-CHMePh, R2 = H; 64-83% yields] and PhCH(NR1R2)CO2R* 4 (R1 = R2 = Et; R1 = COMe, CO2Me, R2 = H; same R*; 37-71% yields). The corresponding reactions of di-Me ?-diazobenzylphosphonate PhC(N2)P(O)(OMe)2 5 with primary amines constitute a simple route to aminophosphonates PhCH(NHR)P(O)(OMe)2 6 (R = COMe, COEt, CO2CH2Ph, CO2CMe3, 4-ClC6H4, 4-MeC6H4, 4-MeOC6H4; 13-96% yields).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of this investigation is to evaluate the feasibility of using bituminous coal as a precursor material for the production of chars and activated carbons using physical and chemical activation processes. The chemical activation process was accomplished by impregnating the raw materials with different dehydrating agents in different ratios and concentrations, prior to heat treatment (ZnCl2, KCl, KOH, NaOH and Fe2(SO4)3·xH2O). Steam activation of the precursor material was adopted for the preparation of activated carbon using physical activation technology. Different types of bituminous coal; namely, contaminated Columbian (contaminated with pet. coke), pure Columbian, Venezuelan and New Zealand bituminous coal were used in the production processes. BET surface area, micropore area, pore size distribution and total pore volume of the chars and activated carbons were determined from N2 adsorption/desorption isotherm, measured at 77 K. Charring conditions, charring temperature of 800 °C and charring time of 4 h, proved to be the optimum conditions for preparing chars. Contaminated Columbian were found to be the best precursor material for the production of char with reasonable physical characteristics (surface area = 138.1 m2 g-1 and total pore volume of 8.656 × 10-0.2 cm3 g-1). An improvement in the physical characteristics of the activated carbons was obtained upon the treatment of coal with dehydrating agents. Contaminated Columbian treated with 10 wt% ZnCl2 displayed the highest surface area and total pore volume (surface area = 231.5 m2 g-1 and total pore volume = 0.1227 cm3 g-1) with well-developed microporisity (micropore area = 92.3 m2 g-1). Venezuelan bituminous coal using the steam activation process was successful in producing activated carbon with superior physical characteristics (surface area = 863.50 m2 g-1, total pore volume = 0.469 cm3 g-1 and micropore surface area = 783.58 m2 g-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two different procedures were compared for the preparation of cellulose nanofibres from flax and microcrystalline cellulose (MCC). The first involved a combination of high energy ball milling, acid hydrolysis and ultrasound, whilst the second employed a high pressure homogenisation technique, with and without various pre-treatments of the fibrous feedstock. The geometry and microstructure of the cellulose nanofibres were observed by SEM and TEM and their particle size measured using image analysis and dynamic light scattering. Aspect ratios of nanofibres made by microfluidisation were orders of magnitude greater than those achieved by acid hydrolysis. FTIR, XRD and TGA were used to characterise changes to chemical functionality, cellulose crystallinity and thermal stability resulting from the approaches used for preparing the cellulose nanofibres. Hydrolysis using sulphuric acid gave rise to esterification of the cellulose nanofibres, a decrease in crystallinity with MCC, but an increase with flax, together with an overall reduction in thermal stability. Increased shear history of flax subjected to multiple passes through the microfluidiser, raised both cellulose nanofibril crystallinity and thermal stability, the latter being strongly influenced by acid, alkaline and, most markedly, silane pretreatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometry (MS)-based metabolomics is emerging as an important field of research in many scientific areas, including chemical safety of food. A particular strength of this approach is its potential to reveal some physiological effects induced by complex mixtures of chemicals present at trace concentrations. The limitations of other analytical approaches currently employed to detect low-dose and mixture effects of chemicals make detection very problematic. Besides this basic technical challenge, numerous analytical choices have to be made at each step of a metabolomics study, and each step can have a direct impact on the final results obtained and their interpretation (i.e. sample preparation, sample introduction, ionization, signal acquisition, data processing, and data analysis). As the application of metabolomics to chemical analysis of food is still in its infancy, no consensus has yet been reached on defining many of these important parameters. In this context, the aim of the present study is to review all these aspects of MS-based approaches to metabolomics, and to give a comprehensive, critical overview of the current state of the art, possible pitfalls, and future challenges and trends linked to this emerging field. (C) 2010 Elsevier Ltd. All rights reserved.