19 resultados para CHAGAS CARDIOMYOPATHY


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the effect of maternal type 1 diabetes on the structure and function of the embryonic and neonatal mouse heart.

Methods: Type 1 diabetes was induced in female C57BL6/J mice using streptozotocin. Embryonic (n = 105) and neonatal hearts (n = 46) were examined using high-frequency ultrasound (US) and a cohort of E18.5 (n = 34) and 1-day-old pup hearts (n = 27) underwent histological examination.

Results: Global cardiac hypertrophy in late gestation (E18.5) was evident on US in the diabetic group compared to controls with increased interventricular septal (IVS) thickness (0.44 ± 0.08 mm vs 0.36 ± 0.08 mm, P < .05) and increased left ventricular wall thickness (0.38 ± 0.04 mm vs 0.29 mm ± 0.05, P < .01). Isovolumetric relaxation time was initially prolonged in the diabetic group but resolved by E18.5 to control values. Histological examination at E18.5 demonstrated increased transverse measurements (2.42 ± 0.72 mm/g vs 1.86 ± 0.55 mm/g, P < .05) and increased IVS thickness (0.64 ± 0.20 mm/g vs 0.43 ± 0.15 mm/g, P < .05) in diabetic embryos compared to control embryos.

Conclusion: Maternal hyperglycemia has severe effects on offspring with evidence of cardiac impairment and cardiac hypertrophy in the embryo. These effects persisted in the 1-day old but attenuated in the 1-week old suggesting cardiac remodeling after the hyperglycemic milieu of pregnancy is removed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate cardiomyopathy in offspring in a mouse model of pregestational type 1 diabetic pregnancy.

METHODS: Pregestational diabetes was induced with STZ administration in female C57BL6/J mice that were subsequently mated with healthy C57BL6/J males. Offspring were sacrificed at embryonic day 18.5 and 6-week adolescent and 12-week adult stages. The size and number of cardiomyocyte nuclei and also the extent of collagen deposition within the hearts of diabetic and control offspring were assessed following cardiac tissue staining with either haematoxylin and eosin or Picrosirius red and subsequently quantified using automated digital image analysis.

RESULTS: Offspring from diabetic mice at embryonic day 18.5 had a significantly higher number of cardiomyocyte nuclei present compared to controls. These nuclei were also significantly smaller than controls. Collagen deposition was shown to be significantly increased in the hearts of diabetic offspring at the same age. No significant differences were found between the groups at 6 and 12 weeks.

CONCLUSIONS: Our results from offspring of type 1 diabetic mice show increased myocardial collagen deposition in late gestation and have increased myocardial nuclear counts (hyperplasia) as opposed to increased myocardial nuclear size (hypertrophy) in late gestation. These changes normalize postpartum after removal from the maternal intrauterine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, angiopathy, atherosclerosis and arterial hypertension. Rho kinase (ROCK) and protein kinase C (PKC) regulate vascular smooth muscle (VSM) Ca(2+) sensitivity, thus enhancing VSM contraction, and up-regulation of both enzymes in DM is well known. We postulated that in DM, Ca(2+) sensitization occurs in diabetic arteries due to increased ROCK and/or PKC activity. EXPERIMENTAL APPROACH: Rats were rendered hyperglycaemic by i.p. injection of streptozotocin. Age-matched control tissues were used for comparison. Contractile responses to phenylephrine (Phe) and different Ca(2+) concentrations were recorded, respectively, from intact and chemically permeabilized vascular rings from aorta, tail and mesenteric arteries. KEY RESULTS: Diabetic tail and mesenteric arteries demonstrated markedly enhanced sensitivity to Phe while these changes were not observed in aorta. The ROCK inhibitor HA1077, but not the PKC inhibitor chelerythrine, caused significant reduction in sensitivity to agonist in diabetic vessels. Similar changes were observed for myofilament Ca(2+) sensitivity, which was again enhanced in DM in tail and mesenteric arteries, but not in aorta, and could be reduced by both the ROCK and PKC blockers. CONCLUSIONS AND IMPLICATIONS: We conclude that in DM enhanced myofilament Ca(2+) sensitivity is mainly manifested in muscular-type blood vessels and thus likely to contribute to the development of hypertension. Both PKC and, in particular, ROCK are involved in this phenomenon. This highlights their potential usefulness as drug targets in the pharmacological management of DM-associated vascular dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst the decision regarding defibrillator implantation in a patient with a familial sudden cardiac death syndrome is likely to be most significant for any particular individual, the clinical decision-making process itself is complex and requires interpretation and extrapolation of information from a number of different sources. This document provides recommendations for adult patients with the congenital Long QT syndromes, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy. Although these specific conditions differ in terms of clinical features and prognosis, it is possible and logical to take an approach to determining a threshold for implantable cardioveter-defibrillator implantation that is common to all of the familial sudden cardiac death syndromes based on estimates of absolute risk of sudden death. Published on behalf of the European Society of Cardiology. © The Author 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. It has wide-ranging effects on glucose metabolism, including stimulation of insulin release, inhibition of glucagon secretion, reduction of gastric emptying and augmentation of satiety. Importantly, the insulinotropic actions of GLP-1 are uniquely dependent on ambient glucose concentrations, and it is this particular characteristic which has led to its recent emergence as a treatment for type 2 diabetes. Although the major physiological function of GLP-1 appears to be in relation to glycaemic control, there is growing evidence to suggest that it may also play an important role in the cardiovascular system. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature of both rodents and humans, and recent studies have demonstrated that GLP-1R agonists have wide-ranging cardiovascular actions, such as modulation of heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, it appears that these agents may also have beneficial effects in the setting of cardiovascular disease (CVD). For example, GLP-1 has been found to exert cardioprotective actions in experimental models of dilated cardiomyopathy, hypertensive heart failure and myocardial infarction (MI). Preliminary clinical studies also indicate that GLP-1 infusion may improve cardiac contractile function in chronic heart failure patients with and without diabetes, and in MI patients after successful angioplasty. This review will discuss the current understanding of GLP-1 biology, examine its emerging cardiovascular actions in both health and disease and explore the potential use of GLP-1 as a novel treatment for CVD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mr C, a 68-year-old Chinese male with diabetes mellitus, previous stroke and ischaemic cardiomyopathy on clopidogrel, presented with haematochezia. Colonoscopy showed a sigmoid ulcer, which was treated endoscopically. Histology of the biopsy from the ulcer revealed non-specific changes. However, he presented with recurrent bleeding from this non-healing sigmoid ulcer. A review of the histologic specimen revealed CMV intranuclear inclusion bodies. He was treated with intravenous ganciclovir, with no further hematochezia.

Keywords Hematochezia, cytomegalovirus, ulcer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal diabetes mellitus is associated with increased teratogenesis, which can occur in pregestational type 1 and type 2 diabetes. Cardiac defects and with neural tube defects are the most common malformations observed in fetuses of pregestational diabetic mothers. The exact mechanism by which diabetes exerts its teratogenic effects and induces embryonic malformations is unclear. Whereas the sequelae of maternal pregestational diabetes, such as modulating insulin levels, altered fat levels, and increased reactive oxygen species, may play a role in fetal damage during diabetic pregnancy, hyperglycemia is thought to be the primary teratogen, causing particularly adverse effects on cardiovascular development. Fetal cardiac defects are associated with raised maternal glycosylated hemoglobin levels and are up to five times more likely in infants of mothers with pregestational diabetes compared with those without diabetes. The resulting anomalies are varied and include transposition of the great arteries, mitral and pulmonary atresia, double outlet of the right ventricle, tetralogy of Fallot, and fetal cardiomyopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.