25 resultados para Brushing abrasion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobic “lotus effect” materials are typically not sufficiently robust for most real world applications because their small surface features are both easily damaged and vulnerable to fouling. Here, a method for preparing a new type of superhydrophobic (? > 162°) composite material by compression of superhydrophobic metal particles is reported. This material, which has no natural analogue, has low-surface-energy microstructures extending throughout its whole volume. Removing its outer layer by abrasion or cutting deep into it does not result in loss of superhydrophobicity because it merely exposes a fresh portion of the underlying superhydrophobic material. The high contact angle is therefore retained even after accidental damage, and vigorous abrasion can be used to restore hydrophobicity after fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasion seen on some of the retrieved CoCrMo hip joints has been reported to be caused by entrained hard particles in vivo. However, little work has been reported on the abrasion mechanisms of CoCrMo alloy in simulated body environments. Therefore. this study covers the mapping of micro-abrasion wear mechanisms of cast CoCrMo induced by third body hard particles under a wide range of abrasive test conditions. This study has a specific focus on covering the possible in vivo wear modes seen on metal-on-metal (MoM) surfaces. Nano-indentation and nano-scratch tests were also employed to further investigate the secondary wear mechanisms-nano-scale material deformation that involved in micro-abrasion processes. This work addresses the potential detrimental effects of third body hard particles in vivo such as increased wear rates (debris generation) and corrosion (metal-ion release). The abrasive wear mechanisms of cast CoCrMo have been investigated under various wear-corrosion conditions employing two abrasives, SiC (similar to 4 mu m) and Al(2)O(3) (similar to 1 mu m), in two test solutions, 0.9% NaCl and 25% bovine serum. The specific wear rates, wear mechanisms and transitions between mechanisms are discussed in terms of the abrasive size, volume fraction and the test solutions deployed. The work shows that at high abrasive volume fractions, the presence of protein enhanced the wear loss due to the enhanced particle entrainment, whereas at much lower abrasive volume fractions, protein reduced the wear loss by acting as a boundary lubricant or rolling elements which reduced the abrasivity (load per particle) of the abrasive particles. The abrasive wear rate and wear mechanisms of the CoCrMo are dependent on the nature of the third body abrasives, their entrainment into the contact and the presence of the proteins. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper brings together and analyzes recent work based on the interpretation of the electrochemical measurements made on a modified micro-abrasion-corrosion tester used in several research programmes. These programmes investigated the role of abradant size, test solution pH in abrasion-corrosion of biomaterials, the abrasion-corrosion performance of sintered and thermally sprayed tungsten carbide surfaces under downhole drilling environments and the abrasion-corrosion of UNS S32205 duplex stainless steel. Various abrasion tests were conducted under two-body grooving, three-body rolling and mixed grooving-rolling abrasion conditions, with and without abrasives, on cast F75 cobalt-chromium-molybdenum (CoCrMo) alloy in simulated body fluids, 2205 in chloride containing solutions as well as sprayed and sintered tungsten carbide surfaces in simulated downhole fluids. Pre- and post-test inspections based on optical and scanning electron microscopy analysis are used to help interpret the electrochemical response and current noise measurements made in situ during micro-abrasion-corrosion tests. The complex wear and corrosion mechanisms and their dependence on the microstructure and surface composition as a function of the pH, abrasive concentration, size and type are detailed and linked to the electrochemical signals. The electrochemical versus mechanical processes are plotted for different test parameters and this new approach is used to interpret tribo-corrosion test data to give greater insights into different tribo-corrosion systems. Thus new approaches to interpreting in-situ electrochemical responses to surfaces under different abrasive wear rates, different abrasives and liquid environments (pH and NaCl levels) are made. This representation is directly related to the mechano-electrochemical processes on the surface and avoids quantification of numerous synergistic, antagonistic and additive terms associated with repeat experiments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasion damage on retrieved CoCrMo based hip joints is reported to be influenced by the entrainment of micron and sub-micron sized debris/hard particles. This paper represents the first attempt to look into the effects of relatively soft abrasives with micron and sub-micron dimensions on the abrasion mechanisms and the abrasion-corrosion performance of the cast CoCrMo in simulated hip joint environments. A modified micro-abrasion tester incorporating a liquid tank and a three-electrode electrochemical cell was used. Al O (300 nm and 1 μm) and sub-micron sized BaSO abrasives were chosen as being comparable in the size and hardness to the wear particles found in vivo. Results show that the specific wear rates of cast CoCrMo are dependent on the abrasive particle size, hardness and volume concentration. Larger particle size, higher hardness and greater abrasive volume fractions gave greater wear rates. The wear-induced corrosion current generally increases with increasing wear rates, and the presence of proteins seems to suppress the wear-induced corrosion current especially when abrasive volume fractions were high. This study shows that the nature of abrasives and the test solutions are both important in determining the wear mechanisms and the abrasion-corrosion response of cast CoCrMo. These findings provide new and important insights into the in vivo wear mechanisms of CoCrMo. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Northern Ireland has the worst oral health in the UK and its children have among the highest levels of tooth decay in Europe (DHSSPS, 2007).
Aim: The aim of this study is to investigate the factors influencing tooth brushing behaviour among Year 6 primary schoolchildren using the Theory of Planned Behaviour (TPB).
Method: Seven semi-structured focus groups involving 56 children were conducted during which children were asked questions about the factors that influence whether or not they brush their teeth. Thematic analysis was used with the purpose of eliciting the belief-based measures for all the TPB constructs.
Results: The findings suggest that children are knowledgeable about their teeth and are aware of the importance of maintaining good oral health; although a number of barriers to consistent tooth brushing exist.
Discussion: The findings will be used to inform stage 2 of the research project; questionnaire development to identify the factors influencing young people’s motivations to improve their tooth brushing behaviour and to assess their relative importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni–P coatings were deposited on aluminium alloy substrate LM24 (Al–9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni–P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To characterize and map temporal changes in the biological and clinical phenotype during a 21-day experimental gingivitis study. Materials and Methods: Experimental gingivitis was induced over 21 days in healthy human volunteers (n = 56), after which normal brushing was resumed (resolution phase). Gingival and plaque indices were assessed. Gingival crevicular fluid was collected from four paired test and contra-lateral control sites in each volunteer during induction (Days 0, 7, 14 and 21) and resolution (Days 28 and 42) of experimental gingivitis. Fluid volumes were measured and a single analyte was quantified from each site-specific, 30s sample. Data were evaluated by analysis of repeated measurements and paired sample tests. Results: Clinical indices and gingival crevicular fluid volumes at test sites increased from Day 0, peaking at Day 21 (test/control differences all p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obtaining as much particulate material as possible from questioned items is desirable in forensic science as this allows a range of analyses to be undertaken and the retention of material for others to check. A method of maximising particulate recovery is described using a kidnap case, where minimal staining on clothing (socks) remained as possible indications of where the victim had been held captive. Police intelligence led to a hostage scene that was sampled. Brushing of the socks recovered about 50 sand grains with some silt: ultrasonic agitation and centrifuging recovered over 300 grains of sand, silt and clay. These were visually compared to scene and control samples, allowing exclusion of 52 samples and the retention of one comparison sample as well as other possibles, saving time and money, but maximising sample quantity and quality. © 2011 Elsevier Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research, we have investigated the effects of addition of different percentages of nanoclay to the ethylene propylene diene monomer (EPDM) and nitrile butadiene rubber (NBR) on the characteristics of these rubbers as seal material. Properties such as tensile strength, modulus at different extensions, elongation at break, compressive set, hardness, and permeability and abrasion resistance are tested to assess the effect of addition of the nanoclay. Results indicate that addition of nanoclay at certain compositions could slightly reduce the strength of the rubber. However more stable modulus at different strains are provided, the hardness of the rubber is preserved and slightly enhanced, the permeability is reduced in both rubbers especially considerable decrease in EPDM is observed which is desirable in diminishing the effect of explosive decompression. At the same time the compression test shows that the nanoclay improves the performance of the rubbers under compression which is essential in seal application. The X-ray diffraction tests clarify that the dispersion of the nanoclay in the NBR samples is of high quality. In the EPDM samples, the dispersion is in need of improvement. POLYM. COMPOS., 30:1657-1667, 2009. © 2008 Society of Plastics Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wear and corrosion of metal-on-metal hip replacements results in wear debris and metal-ion release in vivo, which may subsequently cause pain and hypersensitivity for patients. Retrieved metal-on-metal hip replacements have revealed that two-body sliding wear and three-body abrasive wear are the predominant wear mechanisms. However, there is a lack of understanding of the combined effects of wear/corrosion, especially the effect of abrasion-corrosion.

This study investigates the sliding-corrosion and abrasion-corrosion performance of a cast CoCrMo alloy in simulated hip joint environments using a microabrasion rig integrated with an electrochemical cell. Tests have been conducted in 0.9% NaCl, phosphate buffered saline solution, 25% and 50% bovine serum solutions with 0 or 1 g cm(-3) SiC at 37 degrees C. Experimental results reveal that under abrasion-corrosion test conditions, the presence of proteins increased the total specific wear rate. Conversely, electrochemical noise measurements indicated that the average anodic current levels were appreciably lower for the proteinaceous solutions when compared with the inorganic solutions. A severely deformed nanocrystalline layer was identified immediately below the worn surface for both proteinaceous and inorganic solutions. The layer is formed by a recrystallisation process and/or a strain-induced phase transformation that occurs during microabrasion-corrosion. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some retrieved CoCrMo hip implants have shown that abrasive wear is one of the possible wear mechanisms invoked within such joints. To date, little work has focused on the third body abrasion of CoCrMo and therefore there is a general lack of understanding of the effect of abrasive size and volume concentration on the tribo-corrosion performance of the CoCrMo alloys. The present work assessed the tribo-corrosion behaviour of cast CoCrMo (F-75) under various abrasion-corrosion conditions by using a modified microabrasion tester incorporating a three-electrode electrochemical cell. The effects of reduced abrasive size/hardness and volume concentration, as well as the role of proteins on the tribo-corrosion performance of the cast CoCrMo alloy were addressed. The correlation between electrochemical and mechanical processes for different abrasion-corrosion test conditions has been discussed in detail. Results show that the reduction in abrasive size and volume concentration can significantly affect the abrasion-corrosion wear mechanisms and the wear-induced corrosion response of the material. The finding of this study implies that the smaller/softer third body particles generated in vivo could also result in significant wear-induced corrosion and therefore potential metal ion release, which could be potentially detrimental to both the patient health and the life span of the implants. © 2009 Elsevier Ltd. All rights reserved.