75 resultados para Brown seaweed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent announcement of the first genome sequence of a brown macroalga, the filamentous Ectocarpus, has been accompanied by a number of companion papers in New Phytologist. In a paper which contributes to this special issue, we classified the core cell cycle components of Ectocarpus, comparing them to the previously studied cell cycle components of diatoms. We then carried out fluorescence microscopy experiments to show that the Ectocarpus cell cycle could be deregulated during early development to give endopolyploid adults. We discuss here how our findings complement recent studies on endopolyploidy in plant and algal systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2–3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128 000 bp and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20 000 bp) in the Hurd Deep, an enigmatic trench in the English Channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular marker studies reported here, involving allozymes, mitochondrial DNA and microsatellites, demonstrate that ferox brown trout Salmo trutta in Lochs Awe and Laggan, Scotland, are reproductively isolated and genetically distinct from co-occurring brown trout. Ferox were shown to spawn primarily, and possibly solely, in a single large river in each lake system making them particularly vulnerable to environmental changes. Although a low level of introgression seems to have occurred with sympatric brown trout, possibly as a result of human-induced habitat alterations and stocking, ferox trout in these two lakes meet the requirements for classification as a distinct biological, phylogenetic and morphological species. It is proposed that the scientific name Salmo ferox Jardine, 1835, as already applied to Lough Melvin (Ireland) ferox, should be extended to Awe and Laggan ferox.