244 resultados para British Heart Foundation
Resumo:
Background: As trials of 5 years of tamoxifen in early breast cancer mature, the relevance of hormone receptor measurements (and other patient characteristics) to long-term outcome can be assessed increasingly reliably. We report updated meta-analyses of the trials of 5 years of adjuvant tamoxifen.
Methods: We undertook a collaborative meta-analysis of individual patient data from 20 trials (n=21457) in early breast cancer of about 5 years of tamoxifen versus no adjuvant tamoxifen, with about 80% compliance. Recurrence and death rate ratios (RRs) were from log-rank analyses by allocated treatment.
Findings: In oestrogen receptor (ER)-positive disease (n=10 645), allocation to about 5 years of tamoxifen substantially reduced recurrence rates throughout the first 10 years (RR 0.53 [SE 0.03] during years 0-4 and RR 0.68 [0.06] during years 5-9 [both 2p<0.00001]; but RR 0.97 [0.10] during years 10-14, suggesting no further gain or loss after year 10). Even in marginally ER-positive disease (10-19 fmol/mg cytosol protein) the recurrence reduction was substantial (RR 0.67 [0.08]). In ER-positive disease, the RR was approximately independent of progesterone receptor status (or level), age, nodal status, or use of chemotherapy. Breast cancer mortality was reduced by about a third throughout the first 15 years (RR 0.71 [0.05] during years 0-4, 0.66 [0.05] during years 5-9, and 0.68 [0.08] during years 10-14; p<0.0001 for extra mortality reduction during each separate time period). Overall non-breast-cancer mortality was little affected, despite small absolute increases in thromboembolic and uterine cancer mortality (both only in women older than 55 years), so all-cause mortality was substantially reduced. In ER-negative disease, tamoxifen had little or no effect on breast cancer recurrence or mortality.
Interpretation: 5 years of adjuvant tamoxifen safely reduces 15-year risks of breast cancer recurrence and death. ER status was the only recorded factor importantly predictive of the proportional reductions. Hence, the absolute risk reductions produced by tamoxifen depend on the absolute breast cancer risks (after any chemotherapy) without tamoxifen.
Funding: Cancer Research UK, British Heart Foundation, and Medical Research Council.
Resumo:
Background: After breast-conserving surgery, radiotherapy reduces recurrence and breast cancer death, but it may do so more for some groups of women than for others. We describe the absolute magnitude of these reductions according to various prognostic and other patient characteristics, and relate the absolute reduction in 15-year risk of breast cancer death to the absolute reduction in 10-year recurrence risk.
Methods: We undertook a meta-analysis of individual patient data for 10?801 women in 17 randomised trials of radiotherapy versus no radiotherapy after breast-conserving surgery, 8337 of whom had pathologically confirmed node-negative (pN0) or node-positive (pN+) disease.
Findings: Overall, radiotherapy reduced the 10-year risk of any (ie, locoregional or distant) first recurrence from 35·0% to 19·3% (absolute reduction 15·7%, 95% CI 13·7–17·7, 2p<0·00001) and reduced the 15-year risk of breast cancer death from 25·2% to 21·4% (absolute reduction 3·8%, 1·6–6·0, 2p=0·00005). In women with pN0 disease (n=7287), radiotherapy reduced these risks from 31·0% to 15·6% (absolute recurrence reduction 15·4%, 13·2–17·6, 2p<0·00001) and from 20·5% to 17·2% (absolute mortality reduction 3·3%, 0·8–5·8, 2p=0·005), respectively. In these women with pN0 disease, the absolute recurrence reduction varied according to age, grade, oestrogen-receptor status, tamoxifen use, and extent of surgery, and these characteristics were used to predict large (=20%), intermediate (10–19%), or lower (<10%) absolute reductions in the 10-year recurrence risk. Absolute reductions in 15-year risk of breast cancer death in these three prediction categories were 7·8% (95% CI 3·1–12·5), 1·1% (–2·0 to 4·2), and 0·1% (–7·5 to 7·7) respectively (trend in absolute mortality reduction 2p=0·03). In the few women with pN+ disease (n=1050), radiotherapy reduced the 10-year recurrence risk from 63·7% to 42·5% (absolute reduction 21·2%, 95% CI 14·5–27·9, 2p<0·00001) and the 15-year risk of breast cancer death from 51·3% to 42·8% (absolute reduction 8·5%, 1·8–15·2, 2p=0·01). Overall, about one breast cancer death was avoided by year 15 for every four recurrences avoided by year 10, and the mortality reduction did not differ significantly from this overall relationship in any of the three prediction categories for pN0 disease or for pN+ disease.
Interpretation: After breast-conserving surgery, radiotherapy to the conserved breast halves the rate at which the disease recurs and reduces the breast cancer death rate by about a sixth. These proportional benefits vary little between different groups of women. By contrast, the absolute benefits from radiotherapy vary substantially according to the characteristics of the patient and they can be predicted at the time when treatment decisions need to be made.
Funding: Cancer Research UK, British Heart Foundation, and UK Medical Research Council.
Resumo:
Background: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear.
Methods: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes.
Results: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis.
Conclusions: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.)
Resumo:
OBJECTIVE: Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland.
METHODS: CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted.
RESULTS: Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses.
CONCLUSIONS: Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity.