57 resultados para Bridges -- Vibration
Resumo:
This study discusses structural damage diagnosis of real steel truss bridges by measuring trafficinduced vibration of bridges and utilizing a damage indicator derived from linear system parameters of a time series model. On-site damage experiments were carried out on real steel truss bridges. Artificial damage was applied to the bridge by severing a truss member with a cutting machine.Vehicle-induced vibrations of the bridges before and after applying damagewere measured and used in structural damage diagnosis of the bridges. Changes in the damage indicator are detected by Mahalanobis-Taguchi system (MTS) which is one of multivariate outlier analyses. The damage indicator and outlier detection was successfully applied to detect anomalies in the steel truss bridges utilizing vehicle-induced vibrations. Observations through this study demonstrate feasibility of the proposed approach for real world applications.
Resumo:
A nonlinear equation of motion is found for the dimer comprising two charged H2O molecules. The THz dielectric response to nonharmonic vibration of a nonrigid dipole, forming the hydrogen bond (HB), is found in the direction transverse to this bond. An explicit expression is derived for the autocorrelator that governs the spectrum generated by transverse vibration (TV) of such a dipole. This expression is obtained by analytical solution of the truncated set of recurrence equations. The far infrared (FIR) spectra of ice at the temperature - 7 degrees C are calculated. The wideband, in the wavenumber (frequency) v range 0... 100.0 cm(-1), spectra are obtained for liquid water at room temperature and for supercooled water at -5.6 degrees C. All spectra are represented in terms of the complex permittivity epsilon(v) and the absorption coefficient alpha(v). The obtained analytical formula for epsilon comprises the term epsilon(perpendicular to) pertinent to the studied TV mechanism with three additional terms Delta epsilon(q), Delta epsilon(mu), and epsilon(or) arising, respectively, from: elastic harmonic vibration of charged molecules along the H-bond; elastic reorientation of HB permanent dipoles; and rather free libration of permanent dipoles in 'defects' of water/ice structure. The suggested TV-dielectric relaxation mechanism allows us: (a) to remove the THz 'deficit' of loss epsilon" inherent in previous theoretical studies; (b) to explain the THz loss and absorption spectra in supercooled (SC) water; and (c) to describe, in agreement with the experiment, the low- and high-frequency tails of the two bands of ice H2O located in the range 10...300 cm(-1). Specific THz dielectric properties of SC water are ascribed to association of water molecules, revealed in our study by transverse vibration of HB charged molecules. (C) 2006 Published by Elsevier B.V.
Resumo:
Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.
Resumo:
This research studies the structural behaviour of bridge deck slabs under static patch loads in steel–concrete composite bridges and investigates compressive membrane action (CMA) in concrete bridge decks slabs, which governs the structural behaviour. A non-linear 3D finite element analysis models was developed using ABAQUS 6.5 software packages. Experimental data from one-span composite bridge structures are used to validate and calibrate the proposed FEM models. A series of parametric studies is conducted. The analysis results are discussed and conclusions on the behaviour of the bridge decks are presented.
Resumo:
Background: Cross-arch bridges are used to stabilize teeth for patients with reduced periodontal support. Little is known about technical or biological complications, whether teeth and implants can be combined in this type of bridge and the long-term effects on tooth loss.
Resumo:
Edgard Vare` se’s Poe` me e´ lectronique can be viewed as a bridge between early twentieth-century modernism and electroacoustic music. This connection to early modernism is most clearly seen in its use of musical juxtaposition, a favoured technique of early modernist composers, especially those active in Paris. Juxtaposition and non-motion are considered here, particularly in relationship to Smalley’s exposition of spectromorphology (Smalley 1986), which in its preoccupation with motion omits any significant consideration of non-motion. Juxtaposition and non-motion have an important history within twentieth-century music, and as an early classic of electroacoustic music, Poe` me e´ lectronique is a particularly striking example of a composition that is rich in juxtapositions similar to those found in passages of early modernist music. Examining Poe` me e´ lectronique through the lens of juxtaposition and non-motion reveals how the organisation of its juxtaposed sounds encourages the experience of sound structure suspended time.
Resumo:
In the last 50 years, many bridges have been built as composite structures with decks of reinforced concrete that are supported by longitudinal steel beams. The presence of the longitudinal steel beams and the unloaded area of concrete slab cause the loaded deck slabs to be restrained against lateral expansion. As a result, a compressive membrane thrust is developed. In experimental tests, the authors built a series of one-third scale steel-concrete composite bridge models with several varying structural parameters, including concrete compressive strength, reinforcement percentage, and the size of steel supporting beams. After comparing the results of different models, the influence of these structural parameters on the amount of compressive membrane action in the deck slab was evaluated. Furthermore, the improvement of an existing theoretical model provided accurate predictions for the loading-carrying capacities.
Resumo:
Masonry arches are strong, durable, aesthetically pleasing and largely maintenance free, yet since 1900 there has been a dramatic decline in their use. However, designers, contractors and clients now have access to a new method of constructing arches incorporating precast concrete voussoirs interconnected via polymeric reinforcement and a concrete screed. No centring is necessary, as the FlexiArch, when it is lifted, transforms under the forces of gravity into the desired arch shape. After discussing general aspects of innovation, the basic concept of the arch bridge system is presented along with technological advances since it was patented. Experiences gained from building over 40 FlexiArch bridges in the UK and Ireland and from model and full-scale tests carried out to validate the system during installation and in service are described. Thus under load the system behaves like a traditional masonry arch and existing analysis methods can be used for design and assessment.