2 resultados para Boundary Quantum Field Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form.
In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction
between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements.
We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed
through time-gated spin-like measurements.