28 resultados para Bottom quarks
Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate
Resumo:
Thin film Ba0.5Sr0.5TiO3 (BST) capacitors of thickness similar to75 nm to similar to1200 nm, with Au top electrodes and SrRuO 3 (SRO) or (La, Sr)CoO3 (LSCO) bottom electrodes were fabricated using Pulsed Laser Deposition. Implementing the "series capacitor model," bulk and interfacial capacitance properties were extracted as a function of temperature and frequency. 'Bulk' properties demonstrated typical ceramic behaviour, displaying little frequency dependence and a permittivity and loss peak at 250 K and 150 K respectively. The interfacial component was found to be relatively temperature and frequency independent for the LSCO/BST capacitors, but for the SRO/BST configuration the interfacial capacitance demonstrated moderate frequency and little temperature dependence below T similar to 300 K but a relatively strong frequency and temperature dependence above T similar to3 00 K. This was attributed to the thermal activation of a space charge component combined with a thermally independent background. The activation energy for the space charge was found to be E-A similar to 0.6 eV suggesting de-trapping of electrons from shallow level traps associated with a thin interfacial layer of oxygen vacancies, parallel to the electrodes.
Resumo:
This paper explores the scope to bridge top-down and bottom-up perspectives on spatial planning by drawing on EU-funded action research in relation to rural settlement planning in Northern Ireland. The empirical work is located within a review of planning theory that exposes a long running tension between the technocratic stances of government planners and the aspirations of engaged citizens. It demonstrates the operation of a large group planning methodology that delivers community preference with environmental responsibility as a participatory input into planning policy formulation. Transferable insights into the dynamics of spatial planning are identified.
Resumo:
Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non-equilibrium desorption model. Good agreement was found between the two sets of data.
Resumo:
Perspective and front cover article: Homogeneous catalysts entrapped in silica matrices, including ionic liquid containing 'ionogels', exhibit high selectivity, unexpected activity and excellent recyclability.
Resumo:
We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.
Resumo:
The influence of bottom topography on the distribution of temperature and salinity in the Indonesian seas region has been studied with a high-resolution model based on the Princeton Ocean Model. One of the distinctive properties of the model is an adequate reproduction of all major topographic features in the region by the model bottom relief. The three major routes of flow of Pacific water through the region have been identified. The western route follows the flow of North Pacific Water through the Sulawesi Sea, Makassar Strait, Flores Sea, and Banda Sea. This is the main branch of the Indonesian Throughflow. The eastern routes follow the flow of South Pacific water through the eastern Indonesian seas. This water enters the region either through the Halmahera Sea or by flowing to the north around Halmahera Island into the Morotai Basin and then into the Maluku Sea. A deep southward flow of South Pacific Water fills the Seram Sea below 1200 m through the Lifamatola Passage. As it enters the Seram Sea, this overflow turns eastward at depths greater than 2000 m, then upwells in the eastern part of the Seram Sea before returning westward at ~1500-2000 m. The flow continues westward across the Seram Sea, spreading to greater depths before entering the Banda Sea at the Buru-Mangole passage. It is this water that shapes the temperature and salinity of the deep Banda Sea. Topographic elevations break the Indonesian seas region down into separate basins. The difference in the distributions of potential temperature, ?, and salinity, S, in adjacent basins is primarily due to specific properties of advection of ? and S across a topographic rise. By and large, the topographic rise blocks deep flow between basins whereas water shallower than the depth of the rise is free to flow between basins. To understand this process, the structure of simulated fields of temperature and salinity has been analyzed. To identify a range of advected ? or S, special sections over the sills with isotherms or isohalines and isotachs of normal velocity have been considered. Following this approach the impact of various topographic rises on the distribution of ? and S has been identified. There are no substantial structural changes of potential temperature and salinity distributions between seasons, though values of some parameters of temperature and salinity distributions, e.g., magnitudes of maxima and minima, can change. It is shown that the main structure of the observed distributions of temperature and salinity is satisfactorily reproduced by the model throughout the entire domain.