11 resultados para Boring.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion-acceleration processes have been studied in ultraintense laser plasma interactions for normal incidence irradiation of solid deuterated targets via neutron spectroscopy. The experimental neutron spectra strongly suggest that the ions are preferentially accelerated radially, rather than into the bulk of the material from three-dimensional Monte Carlo fitting of the neutron spectra. Although the laser system has a 10(-7) contrast ratio, a two-dimensional magnetic hydrodynamics simulation shows that the laser pedestal generates a 10 mum scale length in the coronal plasma with a 3 mum scale-length plasma near the critical density. Two-dimensional particle-in-cell simulations, incorporating this realistic density profile, indicate that the acceleration of the ions is caused by a collisionless shock formation. This has implications for modeling energy transport in solid is caused by a collisionless shock formation. This has implications for modeling energy transport in solid density plasmas as well as cone-focused fast ignition using the next generation PW lasers currently under construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the 'hole-boring' (HB)-type of radiation pressure acceleration of ions by circularly polarized laser pulses interacting with overdense plasmas is considered in the regime where the dimensionless scaling parameter I/rho c(3) becomes large. In this regime a non-relativistic treatment of the 'HB' problem is no longer adequate. A new set of fully relativistic formulae for the mean ion energy and 'HB' velocity is derived and validated against one-dimensional particle-in-cell simulations. It is also found that the finite acceleration time of the ions results in large energy spreads in the accelerated ion beam even under the highly idealized conditions of constant laser intensity and uniform mass density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be nu/c = 0.015 at an irradiance of 1.0 x 10(19) W cm(-2) at a wavelength of 1.05 micron, in quantitative agreement with modeling. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal evolution of plasma jets from micrometre-scale thick foils following the interaction of intense (3 × 10 W cm ) laser pulses is studied systematically by time resolved optical interferometry. The fluid velocity in the plasma jets is determined by comparing the data with 2D hydrodynamic simulation, which agrees with the expected hole-boring (HB) velocity due to the laser radiation pressure. The homogeneity of the plasma density across the jets has been found to be improved substantially when irradiating the laser at circular polarization compared to linear polarization. While overdense plasma jets were formed efficiently for micrometre thick targets, decreasing the target areal density and/or increasing the irradiance on the target have provided indication of transition from the 'HB' to the 'light sail (LS)' regime of RPA, characterized by the appearance of narrow-band spectral features at several MeV/nucleon in proton and carbon spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stable relativistic ion acceleration regime for thin foils irradiated by circularly polarized laser pulses is suggested. In this regime, the "light-sail" stage of radiation pressure acceleration for ions is smoothly connected with the initial relativistic "hole-boring" stage, and a defined relationship between laser intensity I(0), foil density n(0), and thickness l(0) should be satisfied. For foils with a wide range of n(0), the required I(0) and l(0) for the regime are theoretically estimated and verified with the particle-in-cell code ILLUMINATION. It is shown for the first time by 2D simulations that high-density monoenergetic ion beams with energy above GeV/u and divergence of 10 degrees are produced by circularly polarized lasers at intensities of 10(22) W/cm(2), which are within reach of current laser systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the outset of a discussion of evaluating digital musical instruments, that is to say instruments whose sound generators are digital and separable though not necessarily separate from their control interfaces (Malloch, 2006), it is reasonable to ask what the term evaluation in this context really means. After all, there may be many perspectives from which to view the effectiveness or otherwise of the instruments we build. For most performers, performance on an instrument becomes a means of evaluating how well it functions in the context of live music making, and their measure of success is the response of the audience to their performance. Audiences evaluate performances on the basis of how engaged they feel they have been by what they have seen and heard. When questioned, they are likely to describe good performances as “exciting,” “skillful,” “musical.” Bad performances are “boring,” and those which are marred by technical malfunction are often dismissed out of hand. If performance is considered to be a valid means of evaluating a musical instrument, then it follows that, for the field of DMI design, a much broader definition of the term “evaluation” than that typically used in human-computer interaction (HCI) is required to reflect the fact that there are a number of stakeholders involved in the design and evaluation of DMIs. In addition to players and audiences, there are also composers, instrument builders, component manufacturers, and perhaps even customers, each of whom will have a different concept of what is meant by “evaluation.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports on the development of an iPhone-based brain-exercise tool for seniors involving a series of focus groups (FGs) and field trials (FTs). Four FGs with 34 participants were conducted aimed at understanding the underlying motivational and de-motivational factors influencing seniors’ engagement with mobile brain-exercise software. As part of the FGs, participants had approximately 40 minutes hands-on experience with commercially available brain-exercise software. A content analysis was conducted on the data resulting in a ranking of 19 motivational factors, of which the top three were challenge, usefulness and familiarity and 15 de-motivational factors, of which the top-three were usability issues, poor communication and games that were too fast. Findings were used to inform the design of three prototype brain-exercise games for the iPhone contained within one overall application, named Brain jog. Subsequently, two FTs were conducted using Brain jog to investigate the part that time exposure has to play in shaping the factors influencing engagement. New factors arose with respect to the initial FGs including the motivational factor feedback and the de-motivational factor boring. The results of this research provide valuable guidelines for the design and evaluation of mobile brain-exercise software for seniors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To clarify some aspects of rock destruction with a disc acting on a high confined tunnel face, a series of tests were carried out to examine fracture mechanisms under an indenter that simulates the tunnel boring machine (TBM) tool action, in the presence of an adjacent groove, when a state of stress (lateral confinement) is imposed on a rock sample. These tests proved the importance of carefully establishing the optimal distance of grooves produced by discs acting on a confined surface, and the value (as a mere order of magnitude) of the increase of the thrust to produce the initiation of chip formation, as long as the confinement pressure becomes greater. © University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By contrast to the Target Normal Sheath acceleration (TNSA) mechanism [1], Radiation Pressure Acceleration (RPA) is currently attracting a substantial amount of experimental [2,3] and theoretical [4-6] attention worldwide due to its superior scaling in terms of ion energy and laser-ion conversion efficiency. Employing Vulcan Petawatt lasers of the Rutherford Appleton Laboratory, UK, both the Hole-boring (HB) and the Light-Sail (LS) regimes of the RPA have been extensively explored. When the target thickness is of the order of hole-boring velocity times the laser pulse duration, highly collimated plasma jets of near solid density are ejected from the foil, lasting up to ns after the laser interaction. By changing the linear polarisation of the laser to circular, improved homogeneity in the jet's spatial density profile is achieved which suggests more uniform and sustained radiation pressure drive on target ions. By decreasing the target areal density or increasing irradiance on the target, the LS regime of the RPA is accessed where relatively high flux (~ 1012 particles/MeV/Sr) of ions are accelerated to ~ 10 MeV/nucleon energies in a narrow energy bandwidth. The ion energy scaling obtained from the parametric scans agrees well with theoretical estimation based on RPA mechanism and the narrow bandwidth feature in the ion spectra is studied by 2D particle-in-simulations.