2 resultados para Blood Oxygen Affinity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Congenital erythrocytosis is by definition present from birth. Patients frequently present in childhood or as young adults and a family history may be present. The erythrocytosis can be primary where there is a defect in the erythroid compartment of secondary where increased erythropoietin production produced due to the defect leads to an erythrocytosis.

MATERIAL AND METHODS: Primary causes include erythropoietin receptor mutations. Congenital secondary causes include mutations in the genes involved in the oxygen-sensing pathway and haemoglobins with abnormal oxygen affinity. Investigations for the cause include an erythropoietin level, oxygen dissociation curve, haemoglobin electrophoresis and sequencing for known gene variants.

RESULTS: The finding of a known or new molecular variant confirms a diagnosis of congenital erythrocytosis. A congenital erythrocytosis may be an incidental finding but nonspecific symptoms are described. Major thromboembolic events have been noted in some cases. Low-dose aspirin and venesection are therapeutic manoeuvres which should be considered in managing these patients.

CONCLUSIONS: Rare individuals presenting often at a young age may have a congenital erythrocytosis. Molecular investigation may reveal a lesion. However, in the majority, currently no defect is identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths.

METHODS: We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1.

RESULTS: SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time.

CONCLUSIONS: We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.