2 resultados para Black box approach
Resumo:
Drawing on the organizational capabilities literature, the authors developed and tested a model of how supportive human resource management (HRM) improved firms’ financial performance perceived by marketing managers through fostering the implementation of a customer-oriented strategy. Customer-linking capability, which is the capability in managing close customer relationships, indicated the implementation of the customer-oriented strategy. Data collected from two emerging economies – China and Hungary –established that supportive HRM partially mediated the relationship between customer-oriented strategy and customer-linking capability. Customer-linking capability further explained how supportive HRM contributed to perceived financial performance. This study explicates the implication of customer-oriented strategy for HRM and reveals the
importance of HRM in strategy implementation. It also sheds some light on the ‘black box’ between HRM and performance. While making important contributions to the field of strategy, HRM and marketing, this study also offers useful practical implications.
Resumo:
We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the ‘explodability’ of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.