64 resultados para Bisphenol A Glycidyl Methacrylate
Raman spectroscopic analysis of chlorhexidine-myristic acid interaction in methacrylate biomaterials
Resumo:
The mixing of poly(methyl methacrylate) (PMMA) bone cement has been studied to develop methods for preparing a consistently high quality cement. A novel droplet test experimental procedure was developed that characterised the wetting characteristics involved in bone cement mixing. Using this technique it was established that increased wetting occurred by mixing bone cement at a lower temperature (-28 degreesC) than normal mixing at room temperature.
Resumo:
The room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, [C(4)mim][PF6] was found to be an efficient plasticizer for poly( methyl methacrylate), prepared by in situ radical polymerization in the ionic liquid medium; the polymers have physical characteristics comparable with those containing traditional plasticizers and retain greater thermal stability.
Resumo:
Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).
Resumo:
A rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC-MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 mu g L-1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC-MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CC alpha) and the detection capability (CC beta) were found to be below the chosen validation level of 1 mu g L-1 for all compounds. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Multi-walled carbon nanotube (MWCNT)/polymethyl methacrylate (PMMA) composites with loadings ranging from 0.1 to 1.0 wt.% were prepared for use as bone cement. Unfunctionalised, carboxyl and amine functionalised MWCNT were used. Thermal properties were characterised in accordance with the International Standard for acrylic cements, ISO 5833:2002. The rate of reaction exotherm generated and thermal necrosis index (TNI) values were calculated. Polymerisation kinetics were characterised using parallel plate rheology and the exotherm during polymerisation was reduced by ˜4–34%, as a consequence of the MWCNT thermal conductivity. The rate of reaction was significantly altered, such that the setting times of the cements were extended (˜3–24%). Consequently, significant decreases in TNI values (ranging from 3% to 99%) were recorded, which could reduce the exothermic temperatures experienced in vivo and therefore prevent the likelihood of polymerising PMMA cement causing thermally-induced bone tissue necrosis. Thermal data was supported by the rheological characterisation results. Onset of polymerisation for PMMA cement exhibited a strong linear increase as a function of MWCNT loading, however, polymer gelation was not affected to the same degree. It is proposed that the chemically functionalised MWCNT altered PMMA bone cement polymerisation kinetics, reducing the rate of polymerisation, and hence, the reaction exotherm.
Resumo:
Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.