2 resultados para Bird surveying method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eight European study sites (in Spain, Ireland, Netherlands, Germany, Poland, Estonia and Sweden), abundance of breeding farmland bird territories was obtained from 500 × 500 m survey plots (30 per area, N = 240) using the mapping method. Two analyses were performed: (I) a Canonical Correspondence Analysis of species abundance in relation to geographical location and variables measuring agricultural intensification at field and farm level to identify significant intensification variables and to estimate the fractions of total variance in bird abundance explained by geography and agricultural intensification; (II) several taxonomic and functional community indices were built and analysed using GLM in relation to the intensification variables found significant in the CCA. The geographical location of study sites alone explains nearly one fifth (19. 5%) of total variation in species abundance. The fraction of variance explained by agricultural intensification alone is much smaller (4. 3%), although significant. The intersection explains nearly two fifths (37. 8%) of variance in species abundance. Community indices are negatively affected by correlates of intensification like farm size and yield, whereas correlates of habitat availability and quality have positive effects on taxonomic and functional diversity of assemblages. Most of the purely geographical variation in farmland bird assemblage composition is associated to Mediterranean steppe species, reflecting the bio-geographical singularity of that assemblage and reinforcing the need to preserve this community. Taxonomic and functional diversity of farmland bird communities are negatively affected by agricultural intensification and positively affected by increasing farmland habitat availability and quality. © 2011 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhancing sampling and analyzing simulations are central issues in molecular simulation. Recently, we introduced PLUMED, an open-source plug-in that provides some of the most popular molecular dynamics (MD) codes with implementations of a variety of different enhanced sampling algorithms and collective variables (CVs). The rapid changes in this field, in particular new directions in enhanced sampling and dimensionality reduction together with new hardware, require a code that is more flexible and more efficient. We therefore present PLUMED 2 here a,complete rewrite of the code in an object-oriented programming language (C++). This new version introduces greater flexibility and greater modularity, which both extends its core capabilities and makes it far easier to add new methods and CVs. It also has a simpler interface with the MD engines and provides a single software library containing both tools and core facilities. Ultimately, the new code better serves the ever-growing community of users and contributors in coping with the new challenges arising in the field.

Program summary

Program title: PLUMED 2

Catalogue identifier: AEEE_v2_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEEE_v2_0.html

Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland

Licensing provisions: Yes

No. of lines in distributed program, including test data, etc.: 700646

No. of bytes in distributed program, including test data, etc.: 6618136

Distribution format: tar.gz

Programming language: ANSI-C++.

Computer: Any computer capable of running an executable produced by a C++ compiler.

Operating system: Linux operating system, Unix OSs.

Has the code been vectorized or parallelized?: Yes, parallelized using MPI.

RAM: Depends on the number of atoms, the method chosen and the collective variables used.

Classification: 3, 7.7, 23. Catalogue identifier of previous version: AEEE_v1_0.

Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1961.

External routines: GNU libmatheval, Lapack, Bias, MPI. (C) 2013 Elsevier B.V. All rights reserved.