9 resultados para Biotelemetry
Resumo:
This paper describes the finite-difference time-domain (FDTD) analysis of antenna-body interaction effects occurring when chest-mounted 418 MHz radio transmitters are used for medical telemetry applications. Whole-body software models (homogeneous, layered and tissue-segmented) were developed for an adult male subject. Using an electrically small (300 mm(2)) planar loop antenna, calculated radiation efficiencies ranged between 33.5% and 39.2% for a whole-body model, and between 60.7% and 66.1% for a torso; radiation patterns were found to be largely independent of model composition. The computed radiation efficiency for a 21.5 kg phantom representing a six-year-old female was within 1.1 dB of measured results (actual body mass 28 kg) and well-correlated azimuthal radiation patterns were noted.
Resumo:
Radio-based signalling devices will play an important role in future generations of remote patient monitoring equipment, both at home and in hospital. Ultimately, it will be possible to sample vital signs frompatients, whatever their location and without them necessarily being aware that a measurement is being taken. This paper reviews currentmethods for the transmission by radio of physiological parameters over ranges of 0.3, 3 and 30 m, and describes the radiofrequency hardware required and the carrier frequencies commonly used. Future developments, including full duplex systems and the use of more advanced modulation schemes, are described. The paper concludeswith a case studyof a humantemperature telemeter built to indicateovulation. Clinical results clearly show the advantage to be had in adopting radio biotelemetry in this instance.
Resumo:
Background: The European badger (Melesmeles) is involved in the maintenance of bovine tuberculosis infection and onward spread to cattle. However, little is known about how transmission occurs. One possible route could be through direct contact between infected badgers and cattle. It is also possible that indirect contact between cattle and infected badger excretory products such as faeces or urine may occur either on pasture or within and around farm buildings. A better understanding of behaviour patterns in wild badgers may help to develop biosecurity measures to minimise direct and indirect contact between badgers and cattle. However, monitoring the behaviour of free-ranging badgers can be logistically challenging and labour intensive due to their nocturnal and semi-fossorial nature.We trialled a GPS and tri-axial accelerometer-equipped collar on a free-ranging badger to assess its potential value to elucidate behaviour-time budgets and functional habitat use. Results: During the recording period between 16:00 and 08:00 on a single night, resting was the most commonly identified behaviour (67.4%) followed by walking (20.9%), snuffling (9.5%) and trotting (2.3%).When examining accelerometer data associated with each GPS fix and habitat type (occurring 2 min 30 s before and after), walking was themost common behaviour in woodland (40.3%) and arable habitats (53.8%), while snuffling was themost common behaviour in pasture (61.9%). Several nocturnal resting periods were also observed. The total distance travelled was 2.28 km. Conclusions: In the present report, we demonstrate proof of principle in the application of a combined GPS and accelerometer device to collect detailed quantitative data on wild badger behaviour. Behaviour-time budgets allow us to investigate how badgers allocate energy to different activities and how thismight change with disease status. Such information could be useful in the development of measures to reduce opportunities for onward transmission of bovine tuberculosis from badgers to cattle.
Resumo:
The popularity of tri-axial accelerometer data loggers to quantify animal activity through the analysis of signature traces is increasing. However, there is no consensus on how to process the large data sets that these devices generate when recording at the necessary high sample rates. In addition, there have been few attempts to validate accelerometer traces with specific behaviours in non-domesticated terrestrial mammals.