3 resultados para Biomedical research|Electrical engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter I focus on the EU's emerging biomedical research law and policy and examine the development of citizen science in this setting. The chapter argues that while what the analysis reveals might not be specific to the EU, attention to this organisation underlines important but often overlooked aspects of citizen science. That is, citizen science is (being) made less about promoting substantive involvement by citizens in the fashioning of biomedical trajectories and their empowerment as participants that pursue aims defined by themselves rather than others. Instead citizen science is underpinned by a more longstanding EU level approach to participation in science-based issues that sees it being harnessed, shaped and directed towards supporting the production and legitimation of organisational identity and sociotechnical order (in this case the EU’s). Within biomedical research law and policy citizen science might therefore be expected to support market-optimised biomedical futures and a dynamic internal market and economy. Citizen science is thereby implicated in the delineation of the boundaries of responsibility and accountability (and blame) for the (non-)realisation of public health priorities and objectives. In this way law and policy on participation and citizen science might support current research trajectories that do not serve all health needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applications of acoustic energy systems to prevent bacterial surface adherence. Particular attention will be paid to the electrical engineering aspects of previous work, such as electrode composition, quantitative electrical parameters and the conductive medium used. Scrutiny of published systems from an electrical engineering perspective will help to facilitate improved understanding of the methods, devices and mechanisms that have been effective in controlling bacteria, as well as providing insights and strategies to improve the performance of such systems and develop the next generation of antimicrobial bioelectric materials.