9 resultados para Biology, Molecular|Health Sciences, Pathology|Biophysics, General


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Educational gaming in the health sciences: systematic review. Aim. This paper is a report of a review to investigate the use of games to support classroom learning in the health sciences. Background. One aim of education in the health sciences is to enable learners to develop professional competence. Students have a range of learning styles and innovative teaching strategies assist in creating a dynamic learning environment. New attitudes towards experiential learning methods have contributed to the expansion of gaming as a strategy. Data sources. A search for studies published between January 1980 and June 2008 was undertaken, using appropriate search terms. The databases searched were: British Education Index, British Nursing Index, The Cochrane Library, CINAHLPlus, Medline, PubMed, ERIC, PsychInfo and Australian Education Index. Methods. All publications and theses identified through the search were assessed for relevance. Sixteen papers reporting empirical studies or reviews that involved comparison of gaming with didactic methods were included. Results. The limited research available indicates that, while both traditional didactic methods and gaming have been successful in increasing student knowledge, neither method is clearly more helpful to students. The use of games generally enhances student enjoyment and may improve long-term retention of information. Conclusion. While the use of games can be viewed as a viable teaching strategy, care should be exercised in the use of specific games that have not been assessed objectively. Further research on the use of gaming is needed to enable educators to gaming techniques appropriately for the benefit of students and, ultimately, patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the 5-year European Union (EU)-Integrated Project GEnetics of Healthy Aging (GEHA), constituted by 25 partners (24 from Europe plus the Beijing Genomics Institute from China), is to identify genes involved in healthy aging and longevity, which allow individuals to survive to advanced old age in good cognitive and physical function and in the absence of major age-related diseases. To achieve this aim a coherent, tightly integrated program of research that unites demographers, geriatricians, geneticists, genetic epidemiologists, molecular biologists, bioinfomaticians, and statisticians has been set up. The working plan is to: (a) collect DNA and information on the health status from an unprecedented number of long-lived 90+ sibpairs (n = 2650) and of younger ethnically matched controls (n = 2650) from 11 European countries; (b) perform a genome-wide linkage scannning in all the sibpairs (a total of 5300 individuals); this investigation will be followed by linkage disequilibrium mapping (LD mapping) of the candidate chromosomal regions; (c) study in cases (i.e., the 2650 probands of the sibpairs) and controls (2650 younger people), genomic regions (chromosome 4, D4S1564, chromosome 11, 11.p15.5) which were identified in previous studies as possible candidates to harbor longevity genes; (d) genotype all recruited subjects for apoE polymorphisms; and (e) genotype all recruited subjects for inherited as well as epigenetic variability of the mitochondrial DNA (mtDNA). The genetic analysis will be performed by 9 high-throughput platforms, within the framework of centralized databases for phenotypic, genetic, and mtDNA data. Additional advanced approaches (bioinformatics, advanced statistics, mathematical modeling, functional genomics and proteomics, molecular biology, molecular genetics) are envisaged to identify the gene variant(s) of interest. The experimental design will also allow (a) to identify gender-specific genes involved in healthy aging and longevity in women and men stratified for ethnic and geographic origin and apoE genotype; (b) to perform a longitudinal survival study to assess the impact of the identified genetic loci on 90+ people mortality; and (c) to develop mathematical and statistical models capable of combining genetic data with demographic characteristics, health status, socioeconomic factors, lifestyle habits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence is accumulating that breast cancer is not one disease but many separate diseases. DNA microarray-based gene expression profiling has demonstrated subtypes with distinct phenotypic features and clinical responses. Prominent among the new subtypes is 'basal-like' breast cancer, one of the 'intrinsic' subtypes defined by negativity for the estrogen, progesterone, and HER2/neu receptors and positivity for cytokeratins-5/6. Focusing on basal-like breast cancer, we discuss how molecular technologies provide new chemotherapy targets, optimising treatment whilst sparing patients from un-necessary toxicity. Clinical trials are needed that incorporate long-term follow-up of patients with well-characterised tumour markers. Whilst the absence of an obvious dominant oncogene driving basallike breast cancer and the lack of specific therapeutic agents are serious stumbling blocks, this review will highlight several promising therapeutic candidates currently under evaluation. Thus, new molecular technologies should provide a fundamental foundation for better understanding breast and other cancers which may be exploited to save lives.