4 resultados para Bertranou, Armando
Resumo:
Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.
Resumo:
Free-roaming dogs (FRD) represent a potential threat to the quality of life in cities from an ecological, social and public health point of view. One of the most urgent concerns is the role of uncontrolled dogs as reservoirs of infectious diseases transmittable to humans and, above all, rabies. An estimate of the FRD population size and characteristics in a given area is the first step for any relevant intervention programme. Direct count methods are still prominent because of their non-invasive approach, information technologies can support such methods facilitating data collection and allowing for a more efficient data handling. This paper presents a new framework for data collection using a topological algorithm implemented as ArcScript in ESRI® ArcGIS software, which allows for a random selection of the sampling areas. It also supplies a mobile phone application for Android® operating system devices which integrates Global Positioning System (GPS) and Google Maps™. The potential of such a framework was tested in 2 Italian regions. Coupling technological and innovative solutions associated with common counting methods facilitate data collection and transcription. It also paves the way to future applications, which could support dog population management systems.
Resumo:
Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and Chechik [PODC 2013], often have no means to tolerate failures, once the system has been setup and started. This paper presents, to our knowledge, the first self-healing compact routing scheme. Besides, our schemes are developed for low memory nodes, i.e., nodes need only O(log2 n) memory, and are thus, compact schemes.
We introduce two algorithms of independent interest: The first is CompactFT, a novel compact version (using only O(log n) local memory) of the self-healing algorithm Forgiving Tree of Hayes et al. [PODC 2008]. The second algorithm (CompactFTZ) combines CompactFT with Thorup-Zwick’s treebased compact routing scheme [SPAA 2001] to produce a fully compact self-healing routing scheme. In the self-healing model, the adversary deletes nodes one at a time with the affected nodes self-healing locally by adding few edges. CompactFT recovers from each attack in only O(1) time and ∆ messages, with only +3 degree increase and O(log∆) graph diameter increase, over any sequence of deletions (∆ is the initial maximum degree).
Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the receiver has not been deleted, with only an additional O(y log ∆) latency, where y is the number of nodes that have been deleted on the path between s and t. If t has been deleted, s gets informed and the packet removed from the network.