20 resultados para Benzimidazole
Resumo:
Although it is well established that benzimidazole (BZMs) compounds exert their therapeutic effects through binding to helminth beta-tubulin and thus disrupting microtubule-based processes in the parasites, the precise location of the benzimidazole-binding site on the beta-tubulin molecule has yet to be determined. In the present study, we have used previous experimental data as cues to help identify this site. Firstly, benzimidazole resistance has been correlated with a phenylalanine-to-tyrosine substitution at position 200 of Haemonchus contortus beta-tubulin isotype-I. Secondly, site-directed mutagenesis studies, using fungi, have shown that other residues in this region of the protein can influence the interaction of benzimidazoles with beta-tubulin. However, the atomic structure of the alphabeta-tubulin dimer shows that residue 200 and the other implicated residues are buried within the protein. This poses the question: how might benzimidazoles interact with these apparently inaccessible residues? In the present study, we present a mechanism by which those residues generally believed to interact with benzimidazoles may become accessible to the drugs. Furthermore, by docking albendazole-sulphoxide into a modelled H. contortus beta-tubulin molecule we offer a structural explanation for how the mutation conferring benzimidazole resistance in nematodes may act, as well as a possible explanation for the species-specificity of benzimidazole anthelmintics.
Resumo:
Twenty-four shed-reared lambs were each infected orally with 250 metacercariae of Fasciola hepatica, using either the triclabendazole (TCBZ)-sensitive Cullompton isolate or the TCBZ-resistant Sligo isolate. Twelve weeks after infection the lambs were treated with TCBZ (10 mg/kg) or with the experimental fasciolicide, Compound Alpha (Cpd alpha), a benzimidazole derivative of TCBZ (15 mg/kg). The lambs were euthanised 48,72 and 96 h after TCBZ treatment, or 24, 48 and 72 h after Cpd a treatment, and flukes were collected from the liver and/or gall bladder of each animal. Untreated animals harbouring 12-week infections were euthanised 24 h after administration of anthelmintic to the treatment groups, and the untreated flukes provided control material. A semi-quantitative assessment of the degree of histological change induced by the two drugs after different times of exposure was achieved by scoring the intensity of three well-defined lesions that developed in the testes and uteri of a representative sample of flukes from each lamb. In general, it was found that in those tissues where active meiosis and/or mitosis occurred (testis, ovary, and vitelline follicles), there was progressive loss of cell content due to apparent failure of cell division to keep pace with expulsion of the mature or effete products. Further, actively dividing cell types tended to become individualised, rounded and condensed, characteristic of apoptotic cell death. Protein synthetic activity was apparently inhibited in the Mehlis' secretory cells. In the uterus, where successful formation of shelled eggs represents the culmination of a complex sequence of cytokinetic, cytological and synthetic activity involving the vitelline follicles, the ovary and the Mehlis' gland, histological evidence indicating failure of ovigenesis was evident from 24 h post-treatment onwards. The development of these lesions may be related to the known antitubulin activity of the benzimidazole class of anthelmintics, to the induction of apoptosis in cells where mitosis or meiosis has aborted due to failure of spindle formation, and to drug-induced inhibition of protein synthesis. The semi-quantitative findings indicated that Cpd a is slightly less efficacious than TCBZ itself in causing histological damage to the reproductive structures of TCBZ-sensitive flukes, and that, like TCBZ, it caused no histological damage in flukes of the TCBZ-resistant isolate. This study illustrates the potential utility of histological techniques for conveniently screening representative samples of flukes in field trials designed to validate instances of drug resistance or to test the efficacy of new products against known drug-resistant and drug-susceptible fluke isolates. It also provides reference criteria for drug-induced histopathological changes in fluke reproductive structures which may aid interpretation of TEM findings. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A surface plasmon resonance (SPR) biosensor screening assay was developed and validated to detect 11 benzimidazole carbamate (BZT) veterinary drug residues in milk. The polyclonal antibody used was raised in sheep against a methyl 5(6)-[(carboxypentyl)-thio]-2-benzimidazole carbamate protein conjugate. A sample preparation procedure was developed using a modified QuEChERS method. BZT residues were extracted from milk using liquid extraction/partition with a dispersive solid phase extraction clean-up step. The assay was validated in accordance with the performance criteria described in 2002/657/EC. The limit of detection of the assay was calculated from the analysis of 20 known negative milk samples to be 2.7 mu g kg(-1). The detection capability (CC beta) of the assay was determined to be 5 mu g kg(-1) for 11 benzimidazole residues and the mean recovery of analytes was in the range 81-116%. A comparison was made between the SPR-biosensor and UPLC-MS/MS analyses of milk samples (n = 26) taken from cows treated different benzimidazole products, demonstrating the SPR-biosensor assay to be fit for purpose. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Regulatory authorities, the food industry and the consumer demand reliable determination of chemical contaminants present in foods. A relatively new analytical technique that addresses this need is an immunobiosensor based on surface plasmon resonance (SPR) measurements. Although a range of tests have been developed to measure residues in milk, meat, animal bile and honey, a considerable problem has been encountered with both serum and plasma samples. The high degree of non-specific binding of some sample components can lead to loss of assay robustness, increased rates of false positives and general loss of assay sensitivity. In this paper we describe a straightforward precipitation technique to remove interfering substances from serum samples to be analysed for veterinary anthelmintics by SPR. This technique enabled development of an assay to detect a wide range of benzimidazole residues in serum samples by immunobiosensor. The limit of quantification was below 5 ng/ml and coefficients of variation were about 2%.
Resumo:
Control of Helminthosporium solani, the cause of silver scurf in potato tubers, has been impaired by selection of benzimidazole-resistant strains as a result of repeated use of the fungicide thiabendazole. Identification of thiabendazole-resistant strains of H. solani by conventional techniques takes several weeks. Primers designed from conserved regions of the fungal beta-tubulin gene were used to PCR amplify and sequence a portion of the gene. A point mutation was detected at codon 198 in thiabendazole-resistant isolates causing a change in the amino acid sequence from glutamic acid to alanine or glutamine. Species-specific PCR primers designed to amplify this region were used in conjunction with a restriction endonuclease to cause cleavage in sensitive isolates only and thus provide a rapid diagnostic test to differentiate field isolates.
Resumo:
Cladobotryutn dendroides, causal agent of cobweb disease of Agaricus bisporus, has become increasingly resistant to methylbenzimidazole carbamate (MBC) fungicides following the extensive use of MBC in cultivated mushroom production in Ireland. Of 38 isolates of C. dendroides obtained from Irish mushroom units, 34 were resistant to carbendazim. Primers based on conserved regions of the -tubulin gene were used to amplify and sequence a portion of the -tubulin gene in C. dendroides. A point mutation was detected at codon 50 in isolates resistant to benzimidazole fungicides, causing an amino acid substitution from tyrosine to cysteine. Species-specific PCR primers were designed to amplify the region of the -tubulin gene containing this substitution. The point mutation removed an Ace I restriction site in the -tubulin gene sequence of resistant isolates. Digestion of the PCR product with Ace I thus provides a rapid diagnostic test to differentiate sensitive and resistant isolates of this fungus. EMBL accession number: YI2256.
Resumo:
This study represents the first ß-tubulin sequence from a trematode parasite, namely, the liver fluke, Fasciola hepatica. PCR of genomic DNA showed that at least one ß-tubulin gene from F. hepatica contains no introns. A number of amino acids in the primary sequence of fluke tubulin are different from those described previously in various nematode species and the cestode, Echinococcus multilocularis. ß-Tubulin is an important target for benzimidazole anthelmintics, although (with the exception of triclabendazole) they show limited activity against F. hepatica. The amino acid differences in fluke ß-tubulin are discussed in relation to the selective toxicity of benzimidazoles against helminths and the mechanism of drug resistance.
Resumo:
Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.
Resumo:
We describe new methodology for the synthesis of symmetric bis-benzimidazole carrying 2-aryl moieties, including 2-[4-3'-aminopropoxy)phenyl] and 2-[4-(3'-aminopropanamido)pheny] substituents, together with the synthesis of novel hybrid molecules comprising bis-benzimidazoles in ester and amide combination with the N-mustard chlorambucil. The in vitro activities of these compounds against five cancer cell lines are also provided.
Resumo:
A three-step one pot reaction/purification protocol was developed to facilitate rapid access to benzimidazole-based nucleosides, for which benzoylated benzimidazoribosyl nucleosides incorporating boronic esters were key reaction intermediates.
Resumo:
The effects of the novel benzimidazole, triclabendazole (TCBZ) ('Fasinex', Ciba-Geigy), in its active sulphoxide metabolite form (TCBZ-SX), on the tegumental ultrastructure of Fasciola hepatica were determined in vitro by transmission electron microscopy (TEM), using both intact flukes and tissue-slice material. At a concentration of 15 mu g/ml, the tegument of the whole adult fluke showed ultrastructural changes only after prolonged time-periods, with vacuolation at the base of the syncytium and accumulation of T2 secretory bodies in the tegumental cells. At a concentration of 50 mu g/ml, with both whole flukes and tissue-slices, the tegument appeared extremely abnormal with accumulation of secretory bodies towards the base of the syncytium. With longer incubation times, the tegument was completely sloughed away and the tegumental cells became synthetically inactive. The tegument of the 3-week-old juvenile became progressively convoluted at the apex, while in the basal regions there was severe vacuolation. In the tegumental cells, there were accumulations of T1 secretory bodies. These results confirm TCBZ as a potent fasciolicide, being very effective in disrupting the fluke tegument. They may go some way to explain the mode of action of this important fasciolicide.