12 resultados para Bayesian method
Resumo:
We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.
Resumo:
Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in malware targeting the platform. A worrying trend that is emerging is the increasing sophistication of Android malware to evade detection by traditional signature-based scanners. As such, Android app marketplaces remain at risk of hosting malicious apps that could evade detection before being downloaded by unsuspecting users. Hence, in this paper we present an effective approach to alleviate this problem based on Bayesian classification models obtained from static code analysis. The models are built from a collection of code and app characteristics that provide indicators of potential malicious activities. The models are evaluated with real malware samples in the wild and results of experiments are presented to demonstrate the effectiveness of the proposed approach.
Resumo:
A benefit function transfer obtains estimates of willingness-to-pay (WTP) for the evaluation of a given policy at a site by combining existing information from different study sites. This has the advantage that more efficient estimates are obtained, but it relies on the assumption that the heterogeneity between sites is appropriately captured in the benefit transfer model. A more expensive alternative to estimate WTP is to analyze only data from the policy site in question while ignoring information from other sites. We make use of the fact that these two choices can be viewed as a model selection problem and extend the set of models to allow for the hypothesis that the benefit function is only applicable to a subset of sites. We show how Bayesian model averaging (BMA) techniques can be used to optimally combine information from all models. The Bayesian algorithm searches for the set of sites that can form the basis for estimating a benefit function and reveals whether such information can be transferred to new sites for which only a small data set is available. We illustrate the method with a sample of 42 forests from U.K. and Ireland. We find that BMA benefit function transfer produces reliable estimates and can increase about 8 times the information content of a small sample when the forest is 'poolable'. © 2008 Elsevier Inc. All rights reserved.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recently, Bayesian statistical software has been developed for age-depth modeling (wiggle-match dating) of sequences of densely spaced radiocarbon dates from peat cores. The method is described in non-statistical terms, and is compared with an alternative method of chronological ordering of 14C dates. Case studies include the dating of the start of agriculture in the northeastern part of the Netherlands, and of a possible Hekla-3 tephra layer in the same country. We discuss future enhancements in Bayesian age modeling.
Resumo:
This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.
Resumo:
This work presents novel algorithms for learning Bayesian networks of bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in sampling k-trees (maximal graphs of treewidth k), and subsequently selecting, exactly or approximately, the best structure whose moral graph is a subgraph of that k-tree. The approaches are empirically compared to each other and to state-of-the-art methods on a collection of public data sets with up to 100 variables.
Resumo:
Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits).
Resumo:
We present a method for learning Bayesian networks from data sets containing thousands of variables without the need for structure constraints. Our approach is made of two parts. The first is a novel algorithm that effectively explores the space of possible parent sets of a node. It guides the exploration towards the most promising parent sets on the basis of an approximated score function that is computed in constant time. The second part is an improvement of an existing ordering-based algorithm for structure optimization. The new algorithm provably achieves a higher score compared to its original formulation. Our novel approach consistently outperforms the state of the art on very large data sets.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods [12, 14] tackle the problem by using k-trees to learn the optimal Bayesian network with tree-width up to k. In this paper, we propose a sampling method to efficiently find representative k-trees by introducing an Informative score function to characterize the quality of a k-tree. The proposed algorithm can efficiently learn a Bayesian network with tree-width at most k. Experiment results indicate that our approach is comparable with exact methods, but is much more computationally efficient.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.
Resumo:
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.