6 resultados para Bayesian Normal Mixture Model, Data Binning, Data Analysis
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.
Resumo:
Tide gauge data are identified as legacy data given the radical transition between observation method and required output format associated with tide gauges over the 20th-century. Observed water level variation through tide-gauge records is regarded as the only significant basis for determining recent historical variation (decade to century) in mean sea-level and storm surge. There are limited tide gauge records that cover the 20th century, such that the Belfast (UK) Harbour tide gauge would be a strategic long-term (110 years) record, if the full paper-based records (marigrams) were digitally restructured to allow for consistent data analysis. This paper presents the methodology of extracting a consistent time series of observed water levels from the 5 different Belfast Harbour tide gauges’ positions/machine types, starting late 1901. Tide-gauge data was digitally retrieved from the original analogue (daily) records by scanning the marigrams and then extracting the sequential tidal elevations with graph-line seeking software (Ungraph™). This automation of signal extraction allowed the full Belfast series to be retrieved quickly, relative to any manual x–y digitisation of the signal. Restructuring variably lengthed tidal data sets to a consistent daily, monthly and annual file format was undertaken by project-developed software: Merge&Convert and MergeHYD allow consistent water level sampling both at 60 min (past standard) and 10 min intervals, the latter enhancing surge measurement. Belfast tide-gauge data have been rectified, validated and quality controlled (IOC 2006 standards). The result is a consistent annual-based legacy data series for Belfast Harbour that includes over 2 million tidal-level data observations.
Resumo:
An RVE–based stochastic numerical model is used to calculate the permeability of randomly generated porous media at different values of the fiber volume fraction for the case of transverse flow in a unidirectional ply. Analysis of the numerical results shows that the permeability is not normally distributed. With the aim of proposing a new understanding on this particular topic, permeability data are fitted using both a mixture model and a unimodal distribution. Our findings suggest that permeability can be fitted well using a mixture model based on the lognormal and power law distributions. In case of a unimodal distribution, it is found, using the maximum-likelihood estimation method (MLE), that the generalized extreme value (GEV) distribution represents the best fit. Finally, an expression of the permeability as a function of the fiber volume fraction based on the GEV distribution is discussed in light of the previous results.