8 resultados para Batch Proof, Verification of Re-encryption, Verification of Decryption, Mix Network


Relevância:

100.00% 100.00%

Publicador:

Resumo:


In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.


Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studies the uplink of a cellular network with zero-forcing (ZF) receivers under imperfect channel state information at the base station. More specifically, apart from the pilot contamination, we investigate the effect of time variation of the channel due to the relative users' movement with regard to the base station. Our contributions include analytical expressions for the sum-rate with finite number of BS antennas, and also the asymptotic limits with infinite power and number of BS antennas, respectively. The numerical results provide interesting insights on how the user mobility degrades the system performance which extends previous results in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea lice continue to be one of the largest issues for the salmon farming industry and the use of ballan wrasse (Labrus bergylta) as a biological control is considered to be one of the most sustainable solutions in development. Broodstock management has proved challenging in the initial phases due to the significant lack of understanding of basic reproductive physiology and behaviour in the species. The aim of the study was to monitor captive breeding populations throughout a spawning season to examine timing and duration of spawning,quantify egg production, and look at seasonal changes in egg quality parameters as well as investigate the parental contribution to spawning events. A clear spawning rhythm was shown with 3-5 spawning periods inclusive of spawning windows lasting 1-9 days followed by inter spawning intervals of 8-12 days. Fertilization rate remained consistently high (> 87.5%) over the spawning season and did not differ significantly between spawning populations. Hatch rate was variable (0-97.5 %), but peaked in the middle of the spawning season. Meanoocyte diameter and gum layer thickness decreased slightly over the spawning season with no significant differences between spawning populations. Fatty acid (FA) profile of eggs remained consistent throughout the season and with the exception of high levels of ARA (3.8 ± 0.5 % of total FA) the FA profile was similar to that observed in other marine fish species. Parental contribution analysis showed 3 out of 6 spawning events to be single paired mating while the remaining 3 had contributions from multiple parents. Furthermore, the proposed multiple batch spawning nature of this species was confirmed with proof of a single femalecontributing to two separate spawning events. Overall this work represents the first comprehensive data set of spawning activity of captive ballan wrasse, and as such and will be helpful in formulating sustainable broodstock management plans for the species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the effect of of the primary network on the secondary network when harvesting energy in cognitive radio in the presence of multiple power beacons and multiple secondary transmitters. In particular, the influence of the primary transmitter's transmit power on the energy harvesting secondary network is examined by studying two scenarios of primary transmitter's location, i.e., the primary transmitter's location is near to the secondary network and the primary transmitter's location is far from the secondary network. In the scenario where the primary transmitter locates near to the secondary network, although secondary transmitter can be benefit from the harvested energy from the primary transmitter, the interference caused by the primary transmitter suppresses the secondary network performance. Meanwhile, in both scenarios, despite the fact that the transmit power of the secondary transmitter can be improved by the support of powerful power beacons, the peak interference constraint at the primary receiver limits this advantage. In addition, the deployment of multiple power beacons and multiple secondary transmitters can improve the performance of the secondary network. The analytical expressions of the outage probability of the secondary network in the two scenarios are also provided and verified by numerical simulations.