3 resultados para Baltic Sea, Germany
Resumo:
European anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) are southern, warm water species that prefer temperatures warmer than those found in boreal waters. After about 40 years of absence, they were again observed in the 1990s in increasing quantities in the North Sea and the Baltic Sea. Whereas global warming probably played a role in these northward migrations, the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO) and the contraction of the subpolar gyre were important influences. Sardine re-invaded the North Sea around 1990, probably mainly as a response to warmer temperatures associated with the strengthening of the NAO in the late 1980s. However, increasing numbers of anchovy eggs, larvae, juveniles and adults have been recorded only since the mid-1990s, when, particularly, summer temperatures started to increase. This is probably a result of the complex dynamics of ocean–atmosphere coupling involving changes in North Atlantic current structures, such as the contraction of the subpolar gyre, and dynamics of AMO. Apparently, climate variability drives anchovies and sardines into the North and Baltic Seas. Here, we elucidate the climatic background of the return of anchovies and sardines to the northern European shelf seas and the changes in the North Sea fish community in the mid-1990s in response to climate variability.
Resumo:
The environmental fate of selected persistent organic pollutants (POPs) in the North Sea system is modelled with a high resolution Fate and Transport Ocean Model (FANTOM) that uses hydrodynamic model output from the Hamburg Shelf Ocean Model (HAMSOM). Large amounts of POPs enter the North Sea from the surrounding highly populated, industrialised and agricultural countries. Major pathways to the North Sea are atmospheric deposition and river inputs, with additional contributions coming from bottom sediments and adjacent seas. The model domain covers the entire North Sea region, extending northward as far as the Shetland Islands, and includes adjacent basins such as the Skagerrak, Kattegat, and the westernmost part of the Baltic Sea. Model resolution (for both models) is 1.5’ latitude x 2.5’ longitude (approximately 3 km horizontal resolution) with 30 vertical levels. The POP model also has 20 sediment layers. Important model processes controlling the fate of POPs in the North Sea system are discussed. Results focus on Lindane gamma- HCH or gamma-hexachlorocyclohexane) and PCB 153.
Resumo:
Assessment of marine downscaling of global model simulations to the regional scale is a prerequisite for understanding ocean feedback to the atmosphere in regional climate downscaling. Major difficulties arise from the coarse grid resolution of global models, which cannot provide sufficiently accurate boundary values for the regional model. In this study, we first setup a stretched global model (MPIOM) to focus on the North Sea by shifting poles. Second, a regional model (HAMSOM) was performed with higher resolution, while the open boundary values were provided by the stretched global model. In general, the sea surface temperatures (SSTs) in the two experiments are similar. Major SST differences are found in coastal regions (root mean square difference of SST is reaching up to 2°C). The higher sea surface salinity in coastal regions in the global model indicates the general limitation of this global model and its configuration (surface layer thickness is 16 m). By comparison, the advantage of the absence of open lateral boundaries in the global model can be demonstrated, in particular for the transition region between the North Sea and Baltic Sea. On long timescales, the North Atlantic Current (NAC) inflow through the northern boundary correlates well between both model simulations (R~0.9). After downscaling with HAMSOM, the NAC inflow through the northern boundary decreases by ~10%, but the circulation in the Skagerrak is stronger in HAMSOM. The circulation patterns of both models are similar in the northern North Sea. The comparison suggests that the stretched global model system is a suitable tool for long-term free climate model simulations, and the only limitations occur in coastal regions. Regarding the regional studies focusing on the coastal zone, nested regional model can be a helpful alternative.