5 resultados para Bale
Resumo:
This study aimed to assess the effect of the number of straw bales (SBs) provided on the behaviour and leg health of commercial broiler chickens. Houses containing ~23 000 broiler chickens were assigned to one of two treatments: (1) access to 30 SBs per house, ‘30SB’ or (2) access to 45 SB per house, ‘45SB’. This equated to bale densities of 1 bale/44 m2 and 1 bale/29 m2 of floor space within houses, respectively. Treatments were applied in one of two houses on a commercial farm, and were replicated over six production cycles. Both houses had windows and were also artificially lit. Behaviour was observed in weeks 3 to5 of the cycle. This involved observations of general behaviour and activity, gait scores (0: perfect to 5: unable to walk) and latency to lie (measured in seconds from when a bird had been encouraged to stand). Production performance and environmental parameters were also measured. SB density had no significant effect on activity levels (P>0.05) or walking ability (P>0.05). However, the average latency to lie was greater in 30SB birds compared with 45SB birds (P<0.05). The incidence of hock burn and podo dermatitis, average BW at slaughter and levels of mortality and culling were unaffected by SB density (P>0.05). The results from this study suggest that increasing SB levels from 1 bale/44 m2 to 1 bale/29 m2 floor space does not lead to significant improvements in the welfare of commercial broiler chickens in windowed houses.
Resumo:
1. The population density and age structure of two species of heather psyllid Strophingia ericae and Strophingia cinereae, feeding on Calluna vulgaris and Erica cinerea, respectively, were sampled using standardized methods at locations throughout Britain. Locations were chosen to represent the full latitudinal and altitudinal range of the host plants.
2. The paper explains how spatial variation in thermal environment, insect life-history characteristics and physiology, and plant distribution, interact to provide the mechanisms that determine the range and abundance of Strophingia spp.
3. Strophingia ericae and S. cinereae, despite the similarity in the spatial distribution patterns of their host plants within Britain, display strongly contrasting geographical ranges and corresponding life-history strategies. Strophingia ericae is found on its host plant throughout Britain but S. cinereae is restricted to low elevation sites south of the Mersey-Humber line and occupies only part of the latitudinal and altitudinal range of its host plant. There is no evidence to suggest that S. ericae has reached its potential altitudinal or latitudinal limit in the UK, even though its host plant appears to reach its altitudinal limit.
4. There was little difference in the ability of the two Strophingia spp. to survive shortterm exposure to temperatures as low as - 15 degrees C and low winter temperatures probably do not limit distribution in S. cinereae.
5. Population density of S. ericae was not related to altitude but showed a weak correlation with latitude. The spread of larval instars present at a site, measured as an index of instar homogeneity, was significantly correlated with a range of temperature related variables, of which May mean temperature and length of growing season above 3 degrees C (calculated using the Lennon and Turner climatic model) were the most significant. Factor analysis did not improve the level of correlation significantly above those obtained for single climatic variables. The data confirmed that S. ericae has a I year life cycle at the lowest elevations and a 2 year life cycle at the higher elevations. However, there was no evidence, as previously suggested, for an abrupt change from a one to a 2 year life cycle in S. ericae with increasing altitudes or latitudes.
6. By contrast with S. ericae, S. cinereae had an obligatory 1 year life cycle, its population decreased with altitude and the index of instar homogeneity showed little correlation with single temperature variables. Moreover, it occupied only part of the range of its host plant and its spatial distribution in the UK could be predicted with 96% accuracy using selected variables in discriminant analysis.
7. The life histories of the congeneric heather psyllids reflect adaptations that allow them to exploit host plants with different distributions in climatic and thereby geographical space. Strophingia ericae has the flexible life history that enables it to exploit C. vulgaris throughout its European boreal temperate range. Strophingia cinereae has a less flexible life history and is adapted for living on an oceanic temperate host. While the geographic ranges of the two Strophingia spp. overlap within the UK, the psyllids appear to respond differently to variation in their thermal environment.
Resumo:
Implications Provision of environmental enrichment in line with that required by welfare-based quality assurance schemesdoes not always appear to lead to clear improvements in broiler chicken welfare. This research perhaps serves to highlightthe deficit in information regarding the ‘real world’ implications of enrichment with perches, string and straw bales.
Introduction Earlier work showed that provision of natural light and straw bales improved leg health in commercial broilerchickens (Bailie et al., 2013). This research aimed to determine if additional welfare benefits were shown in windowedhouses by increasing straw bale provision (Study 1), or by providing perches and string in addition to straw bales (Study 2).
Material and methods Commercial windowed houses in Northern Ireland containing ~23,000 broiler chickens (placed inhouses as hatched) were used in this research which took place in 2011. In Study 1 two houses on a single farm wereassigned to one of two treatments: (1) 30 straw bales per house (1 bale/44m2), or (2) 45 straw bales per house (1bale/29m2). Bales of wheat straw, each measuring 80cm x 40cm x 40cm were provided from day 10 of the rearing cycle,as in Bailie et al. (2013). Treatments were replicated over 6 production cycles (using 276,000 Ross 308 and Cobb birds),and were swapped between houses in each replicate. In Study 2, four houses on a single farm were assigned to 1 of 4treatments in a 2 x 2 factorial design. Treatments involved 2 levels of access to perches (present (24/house), or absent), and2 levels of access to string (present (24/house), or absent), and both types of enrichment were provided from the start of thecycle. Each perch consisted of a horizontal, wooden beam (300 cm x 5 cm x 5cm) with a rounded upper edge resting on 2supports (15 cm high). In the string treatment, 6 pieces of white nylon string (60 cm x 10 mm) were tied at their mid-pointto the wire above each of 4 feeder lines. Thirty straw bales were also provided per house from day 10. This study wasreplicated over 4 production cycles using 368,000 Ross 308 birds. In both studies behaviour was observed between 0900and 1800 hours in weeks 3-5 of the cycle. In Study 1, 8 focal birds were selected in each house each week, and generalactivity, exploratory and social behaviours recorded directly for 10 minutes. In Study 2, 10 minute video recordings weremade of 6 different areas (that did not contain enrichment) of each house each week. The percentage of birds engaged inlocomotion or standing was determined through scan sampling these recordings at 120 second intervals. Four perches andfour pieces of string were filmed for 25 mins in each house that contained these enrichments on one day per week. The totalnumber of times the perch or string was used was recorded, along with the duration of each bout. In both studies, gaitscores (0 (perfect) to 5 (unable to walk)) and latency to lie (measured in seconds from when a bird had been encouraged tostand) were recorded in 25 birds in each house each week. Farm and abattoir records were also used in both studies todetermine the number of birds culled for leg and other problems, mortality levels, slaughter weights, and levels of pododermatitis and hock burn. Data were analysed using SPSS (version 20.0) and treatment and age effects on behaviouralparameters were determined in normally distributed data using ANOVA (‘Straw bale density*week’, or‘string*perches*week’ as appropriate), and in non-normally distributed data using Kuskall-Wallace tests (P<0.05 forsignificance) . Treatment (but not age) effects on performance and health data were determined using the same testsdepending on normality of data.
Results Average slaughter weight, and levels of mortality, culling, hock burn and pododermatitis were not affected bytreatment in either study (P<0.05). In Study 1 straw bale (SB) density had no significant effect on the frequency orduration of behaviours including standing, walking, ground pecking, dust bathing, pecking at bales or aggression, or onaverage gait score (P>0.05). However, the average latency to lie was greater when fewer SB were provided (30SB 23.38s,45SB 18.62s, P<0.01). In Study 2 there was an interaction between perches (Pe) and age in lying behaviour, with higherpercentages of birds observed lying in the Pe treatment during weeks 4 and 5 (week 3 +Pe 77.0 -Pe 80.9, week 4 +Pe 79.5 -Pe 75.2, week 5 +Pe 78.4 -Pe 76.2, P<0.02). There was also a significant interaction between string (S) and age inlocomotory behaviour, with higher percentages of birds observed in locomotion in the string treatment during week 3 butnot weeks 4 and 5 (week 3 +S 4.9 -S 3.9, week 4 +S 3.3 -S 3.7, week 5 +S 2.6 -S 2.8, P<0.04). There was also aninteraction between S and age in average gait scores, with lower gait scores in the string treatment in weeks 3 and 5 (week3: +S 0.7, -S 0.9, week 4: +S 1.5, -S 1.4, week 5: +S 1.9, -S 2.0, P<0.05). On average per 25 min observation there were15.1 (±13.6) bouts of perching and 19.2 (±14.08) bouts of string pecking, lasting 117.4 (±92.7) and 4.2 (±2.0) s for perchesand string, respectively.
Conclusion Increasing straw bale levels from 1 bale/44m2 to 1 bale/29m2 floor space does not appear to lead to significantimprovements in the welfare of broilers in windowed houses. The frequent use of perches and string suggests that thesestimuli have the potential to improve welfare. Provision of string also appeared to positively influence walking ability.However, this effect was numerically small, was only shown in certain weeks and was not reflected in the latency to lie.Further research on optimum design and level of provision of enrichment items for broiler chickens is warranted. Thisshould include measures of overall levels of activity (both in the vicinity of, and away from, enrichment items).