2 resultados para Bacterial membrane
Resumo:
The bacterial pigment prodigiosin has various biological activities; it is, for instance, an effective antimicrobial. Here, we investigate the primary site targeted by prodigiosin, using the cells of microbial pathogens of humans as model systems: Candida albicans, Escherichia coli, Staphylococcus aureus. Inhibitory concentrations of prodigiosin; leakage of intracellular K+ ions, amino acids, proteins and sugars; impacts on activities of proteases, catalases and oxidases; and changes in surface appearance of pathogen cells were determined. Prodigiosin was highly inhibitory (30% growth rate reduction of C. albicans, E. coli, S. aureus at 0.3, 100 and 0.18 μg ml−1, respectively); caused leakage of intracellular substances (most severe in S. aureus); was highly inhibitory to each enzyme; and caused changes to S. aureus indicative of cell-surface damage. Collectively, these findings suggest that prodigiosin, log Poctanol–water 5.16, is not a toxin but is a hydrophobic stressor able to disrupt the plasma membrane via a chaotropicity-mediated mode-of-action.
Resumo:
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm.