209 resultados para Bacterial Load
Resumo:
This study demonstrates the feasibility of using quantitative real time PCR to measure genomic bacterial load in the nasopharynx of children with invasive meningococcal disease and shows that these loads are exceptionally high (median 6.6 x 105 (Range 1.2 x 105 to 1.1 x 108) genome copies of Neisseria meningitidis per swab).
Resumo:
BACKGROUND: Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.
METHODS: We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.
RESULTS: Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10-4). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).
DISCUSSION: The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important.
Resumo:
The concept of ‘The Three Rs’ (The 3Rs: reduction, refinement and replacement) is an important consideration in the development of alternatives to animal testing in medical research. Invertebrate models such as Galleria mellonella are advantageous both economically and ethically.1 Galleria have proven to be effective alternatives to assess the antimicrobial activity of novel therapeutics.2
In this study Galleria mellonella are validated and used as an in vivo infection model to determine the antimicrobial activity of a novel self-assembling antimicrobial peptide NapFFKK.3 The peptide was considered as being non-toxic to the Galleria with 100% survival 120 hours post inoculation with NapFFKK. Following inoculation with Pseudomonas aeruginosa PAO1, Escherichia coli ATCC 11303, Staphylococcus epidermidis ATCC 35984 and Staphylococcus aureus ATCC 6538, the highest concentration allowing survival was selected and used as the test inoculum. Haemolymph was extracted from inoculated and peptide treated Galleria at either 24 or 72 hours post-treatment. Reduction in bacterial load was determined in comparison to a positive control. Bacterial load was decreased in all treated Galleria with decreasing antimicrobial activity demonstrated with a decreased concentration of peptide (2- log cycle reduction achieved in Escherichia coli inoculated Galleria treated with 2% NapFFKK). The results are promising regarding the use of Galleria mellonella as an infection model and NapFFKK as an effective novel antimicrobial.
Resumo:
RATIONALE: Characterization of bacterial populations in infectious respiratory diseases will provide improved understanding of the relationship between the lung microbiota, disease pathogenesis and treatment outcomes.
OBJECTIVES: To comprehensively define lung microbiota composition during stable disease and exacerbation in bronchiectasis patients.
METHODS: Sputum was collected from patients when clinically stable and before and after completion of antibiotic treatment of exacerbations. Bacterial abundance and community composition were analyzed using anaerobic culture and 16S rDNA pyrosequencing.
MEASUREMENTS AND MAIN RESULTS: In clinically stable patients, aerobic and anaerobic bacteria were detected in 40/40 (100%) and 33/40 (83%) sputum samples, respectively. The dominant organisms cultured were P. aeruginosa (n=10 patients), H. influenzae (n=12), Prevotella (n=18) and Veillonella (n=13). Pyrosequencing generated over 150,000 sequences, representing 113 distinct microbial taxa; the majority of observed community richness resulted from taxa present in low abundance with similar patterns of phyla distribution in clinically stable patients and patients at the onset of exacerbation. Following treatment of exacerbation, there was no change in total (p=0.925), aerobic (p=0.917) or anaerobic (p=0.683) load and only a limited shift in community composition. Agreement for detection of bacteria by culture and pyrosequencing was good for aerobic bacteria such as P. aeruginosa (kappa=0.84) but poorer for other genera including anaerobes. Lack of agreement was largely due to bacteria been detected by pyrosequencing but not by culture.
CONCLUSIONS: A complex microbiota is present in the lungs of bronchiectasis patients which remains stable through treatment of exacerbations suggesting that changes in microbiota composition do not account for exacerbations.
Resumo:
This paper describes inter-specific differences in the distribution of sediment in the gut compartments and in the enzyme and bacterial profiles along the gut of abyssal holothurian species — Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus sampled from a eutrophic site in the NE Atlantic at different times of the year. Proportions of sediments, relative to total gut contents, in the pharynx, oesophagus, anterior and posterior intestine differed significantly in all the inter-species comparisons, but not between inter-seasonal comparisons. Significant differences were also found between the relative proportions of sediments in both the rectum and cloaca of Psychropotes longicauda and Oneirophanta mutabilis. Nineteen enzymes were identified in either gut-tissue or gut-content samples of the holothurians studied. Concentrations of the enzymes in gut tissues and their contents were highly correlated. Greater concentrations of the enzymes were found in the gut tissues suggesting that they are the main source of the enzymes. The suites of enzymes recorded were broadly similar in each of the species sampled collected regardless of the time of the year, and they were similar to those described previously for shallow-water holothurians. Significant inter-specific differences in the gut tissue concentrations of some of the glycosidases suggest dietary differences. For example, Psychropotes longicauda and Pseudostichopus villosus contain higher levels of chitobiase than Oneirophanta mutabilis. There were no seasonal changes in bacterial activity profiles along the guts of O. mutabilis and Pseudostichopus villosus. In both these species bacterial activity and abundance declined between the pharynx/oesophagus and anterior intestine, but then increased along the gut and became greatest in the rectum/cloaca. Although the data sets were more limited for Psychropotes longicauda, bacterial activity increased from the anterior to the posterior intestine but then declined slightly to the rectum/cloaca. These changes in bacterial activity and densities probably reflect changes in the microbial environment along the guts of abyssal holothurians. Such changes suggest that there is potential for microbial breakdown of a broader range of substrates than could be otherwise be achieved by the holothurian itself. However, the present study found no evidence for sedimentary (microbial) sources of hydrolytic enzymes.
Resumo:
It is accepted that ventilator-associated pneumonia is a frequent cause of morbidity and mortality in intensive care patients. This study describes the physicochemical properties of novel surfactant coatings of the endotracheal tube and the resistance to microbial adherence of surfactant coated endotracheal tube polyvinylchloride (PVC). Organic solutions of surfactants containing a range of ratios of cholesterol and lecithin (0:100, 25:75, 50:50, 75:25, dissolved in dichloromethane) were prepared and coated onto endotracheal tube PVC using a multiple dip-coating process. Using modulated temperature differential scanning calorimetry it was confirmed that the binary surfactant systems existed as physical mixtures. The surface properties of both surfactant-coated and uncoated PVC, following treatment with either pooled human saliva or phosphate-buffered saline (PBS), were characterised using dynamic contact angle analysis. Following treatment with saliva, the contact angles of PVC decreased; however, those of the coated biomaterials were unaffected, indicating different rates and extents of macromolecular adsorption from saliva onto the coated and uncoated PVC. The advancing and receding contact angles of the surfactant-coated PVC were unaffected by sonication, thereby providing evidence of the durability of the coatings. The cell surface hydrophobicity and zeta potentials of isolates of Staphylococcus aureus and Pseudomonas aeruginosa, following treatment with either saliva or PBS, and their adherence to uncoated and surfactant-coated PVC (that had been pre-treated with saliva) were examined. Adherence of S. aureus and Ps. aeruginosa to surfactant-coated PVC at each successive time period (0.5, 1, 2, 4, 8 h) was significantly lower than to uncoated PVC, the extent of the reduction frequently exceeding 90%. Interestingly, the microbial anti-adherent properties of the coatings were dependent on the lecithin content. Based on the impressive microbial anti-adherence properties and durability of the surfactant coating on PVC following dip coatings, it is proposed that these systems may usefully reduce the incidence of ventilator-associated pneumonia when employed as luminal coatings of the endotracheal tube.
Resumo:
A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.