15 resultados para BRAIN IMAGING
Resumo:
Vector space models (VSMs) represent word meanings as points in a high dimensional space. VSMs are typically created using a large text corpora, and so represent word semantics as observed in text. We present a new algorithm (JNNSE) that can incorporate a measure of semantics not previously used to create VSMs: brain activation data recorded while people read words. The resulting model takes advantage of the complementary strengths and weaknesses of corpus and brain activation data to give a more complete representation of semantics. Evaluations show that the model 1) matches a behavioral measure of semantics more closely, 2) can be used to predict corpus data for unseen words and 3) has predictive power that generalizes across brain imaging technologies and across subjects. We believe that the model is thus a more faithful representation of mental vocabularies.
Resumo:
Single-cell recording studies have provided vision scientists with a detailed understanding of motion processing at the neuronal level in non-human primates. However, despite the development of brain imaging techniques, it is not known to what extent the response characteristics of motion-sensitive neurons in monkey brain mirror those of human motion sensitive neurons. Using a motion adaptation paradigm, the direction aftereffect, we recently provided evidence of a strong resemblance in the response functions of motion-sensitive neurons in monkey and human to moving dot patterns differing in dot density. Here we describe a series of experiments in which measurements of the direction aftereffect are used to infer the response characteristics of human motion-sensitive neurons when viewing transparent motion and moving patterns that differ in their signal-to-noise ratio (motion coherence). In the case of transparent motion stimuli, our data suggest suppressed activity of motion-sensitive neurons similar to that reported for macaque monkey. In the case of motion coherence, our results are indicative of a linear relationship between signal intensity (coherence) and neural activity; a pattern of activity which also bears a striking similarity to macaque neural activity. These findings strongly suggest that monkey and human motionsensitive neurons exhibit similar response and inhibitory characteristics.
Resumo:
Hippocampus and amygdala changes have been implicated in the pathophysiology and symptomatology of both schizophrenia (SCZ) and bipolar disorder (BD). However relationships between illness course, neuropathological changes and variations in symptomatology remain unclear. This investigation examined the associations between hippocampus and amygdala volumes and symptom dimensions in schizophrenia and bipolar disorder patients after their first episode of psychosis. Symptom severity was associated with decreases in hippocampus/amygdala complex volume across groups. In keeping with previous work bilateral hippocampus and amygdala volume reductions were also identified in the SCZ patients while in BD patients only evidence of amygdala inflation reached significance. The study concludes that there appear to be important relationships between volume changes in the hippocampus and amygdala and dimensions and severity of symptomatology in psychosis. Structural alterations are apparent in both SCZ and BD after first episode of psychosis but present differently in each illness and are more severe in SCZ.
Resumo:
The British Association for Psychopharmacology (BAP) coordinated a meeting of experts to review and revise its first (2006) Guidelines for clinical practice with anti-dementia drugs. As before, levels of evidence were rated using accepted standards which were then translated into grades of recommendation A to D, with A having the strongest evidence base (from randomized controlled trials) and D the weakest (case studies or expert opinion). Current clinical diagnostic criteria for dementia have sufficient accuracy to be applied in clinical practice (B) and brain imaging can improve diagnostic accuracy (B). Cholinesterase inhibitors (donepezil, rivastigmine, and galantamine) are effective for mild to moderate Alzheimer's disease (A) and memantine for moderate to severe Alzheimer's disease (A). Until further evidence is available other drugs, including statins, anti-inflammatory drugs, vitamin E and Ginkgo biloba, cannot be recommended either for the treatment or prevention of Alzheimer's disease (A). Neither cholinesterase inhibitors nor memantine are effective in those with mild cognitive impairment (A). Cholinesterase inhibitors are not effective in frontotemporal dementia and may cause agitation (A), though selective serotonin reuptake inhibitors may help behavioural (but not cognitive) features (B). Cholinesterase inhibitors should be used for the treatment of people with Lewy body dementias (Parkinson's disease dementia and dementia with Lewy bodies (DLB)), especially for neuropsychiatric symptoms (A). Cholinesterase inhibitors and memantine can produce cognitive improvements in DLB (A). There is no clear evidence that any intervention can prevent or delay the onset of dementia. Although the consensus statement focuses on medication, psychological interventions can be effective in addition to pharmacotherapy, both for cognitive and non-cognitive symptoms. Many novel pharmacological approaches involving strategies to reduce amyloid and/or tau deposition are in progress. Although results of pivotal studies are awaited, results to date have been equivocal and no disease-modifying agents are either licensed or can be currently recommended for clinical use.
Resumo:
Premature infants are at risk for adverse motor outcomes, including cerebral palsy and developmental coordination disorder. The purpose of this study was to examine the relationship of antenatal, perinatal, and postnatal risk factors for abnormal development of the corticospinal tract, the major voluntary motor pathway, during the neonatal period. In a prospective cohort study, 126 premature neonates (24-32 weeks' gestational age) underwent serial brain imaging near birth and at term-equivalent age. With diffusion tensor tractography, mean diffusivity and fractional anisotropy of the corticospinal tract were measured to reflect microstructural development. Generalized estimating equation models examined associations of risk factors on corticospinal tract development. The perinatal risk factor of greater early illness severity (as measured by the Score for Neonatal Acute Physiology-II [SNAP-II]) was associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.02), even after correcting for gestational age at birth and postnatal risk factors (P = 0.009). Consistent with previous findings, neonatal pain adjusted for morphine and postnatal infection were also associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.03 and 0.02, respectively). Lessening illness severity in the first hours of life might offer potential to improve motor pathway development in premature newborns.
Resumo:
Papillary glioneuronal tumor (PGNT) was first described as a distinct clinic-pathological entity by Komori et al. in 1998. Since then it has been included as a mixed neuronal-glial tumor in the revised WHO (2007) classification of central nervous system tumors. On brain imaging, it appears as a demarcated, solid to cystic, contrast-enhancing mass usually located in the temporal lobe. Histologically, it is considered a biphasic tumor characterized by small cuboidal GFAP-positive astrocytes around hyalinised blood vessels and synaptophysin-positive interpapillary collections of neurocytes, large neurons and intermediate-sized "ganglioid cells". Although they are generally regarded as benign WHO Grade I tumors, recent reports have described more pathologically aggressive features. To date, these reports have all been single lesions.
Resumo:
Papillary glioneuronal tumor (PGNT) was first described as a distinct clinic-pathological entity by Komori et al. in 1998. Since then it has been included as a mixed neuronal-glial tumor in the revised WHO (2007) classification of central nervous system tumors. On brain imaging, it appears as a demarcated, solid to cystic, contrast-enhancing mass usually located in the temporal lobe. Histologically, it is considered a biphasic tumor characterized by small cuboidal GFAP-positive astrocytes around hyalinised blood vessels and synaptophysin-positive interpapillary collections of neurocytes, large neurons and intermediate-sized "ganglioid cells". Although they are generally regarded as benign WHO Grade I tumors, recent reports have described more pathologically aggressive features. To date, these reports have all been single lesions.
Resumo:
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.
Resumo:
Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.
Resumo:
Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: Preterm infants are exposed to multiple painful procedures in the neonatal intensive care unit (NICU) during a period of rapid brain development. Our aim was to examine relationships between procedural pain in the NICU and early brain development in very preterm infants.
Methods: Infants born very preterm (N ¼ 86; 24–32 weeks gestational age) were followed prospectively from birth, and studied with magnetic resonance imaging, 3-dimensional magnetic resonance spectroscopic imaging, and diffusion tensor imaging: scan 1 early in life (median, 32.1 weeks) and scan 2 at term-equivalent age (median, 40 weeks). We calculated N-acetylaspartate to choline ratios (NAA/choline), lactate to choline ratios, average diffusivity, and white matter fractional anisotropy (FA) from up to 7 white and 4 subcortical gray matter regions of interest. Procedural pain was quantified as the number of skin-breaking events from birth to term or scan 2. Data were
analyzed using generalized estimating equation modeling adjusting for clinical confounders such as illness severity, morphine exposure, brain injury, and surgery.
Results: After comprehensively adjusting for multiple clinical factors, greater neonatal procedural pain was associated with reduced white matter FA (b ¼ 0.0002, p ¼ 0.028) and reduced subcortical gray matter NAA/choline (b ¼ 0.0006, p ¼ 0.004). Reduced FA was predicted by early pain (before scan 1), whereas lower NAA/choline was predicted by pain exposure throughout the neonatal course, suggesting a primary and early effect on subcortical structures with secondary white matter changes.
Interpretation: Early procedural pain in very preterm infants may contribute to impaired brain development.
Resumo:
We present the results of exploratory experiments using lexical valence extracted from brain using electroencephalography (EEG) for sentiment analysis. We selected 78 English words (36 for training and 42 for testing), presented as stimuli to 3 English native speakers. EEG signals were recorded from the subjects while they performed a mental imaging task for each word stimulus. Wavelet decomposition was employed to extract EEG features from the time-frequency domain. The extracted features were used as inputs to a sparse multinomial logistic regression (SMLR) classifier for valence classification, after univariate ANOVA feature selection. After mapping EEG signals to sentiment valences, we exploited the lexical polarity extracted from brain data for the prediction of the valence of 12 sentences taken from the SemEval-2007 shared task, and compared it against existing lexical resources.