196 resultados para BRADYKININ-POTENTIATING PEPTIDES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradykinins and related peptides (BRPs) occur in the defensive skin secretions of many amphibians. Here we report the structures of BRPs and their corresponding biosynthetic precursor cDNAs from the Chinese brown frog, Rana chensinensis, and the North American leopard frog, Lithobates pipiens. R. chensinensis skin contained four transcripts each encoding a different kininogen whose organizations and spectrum of encoded BRPs were similar to those reported for the pickerel frog, Lithobates palustris. In contrast, from L. pipiens, a single skin kininogen was cloned whose structural organization and spectrum of mature BRPs were similar to those reported for the Chinese piebald odorous frog, Huia schmackeri. These data also implied that the endogenous precursor processing proteases in each species pair have identical site-directed specificities, which in part may be dictated by the primary structures of encoded BRPs. Thus the spectra of skin BRPs and the organization of their biosynthetic precursors are not consistent with recent taxonomy. The natural selective pressures that mould the primary structures of amphibian skin secretion peptides are thought to be related to the spectrum of predators encountered within their habitats. Thus similarities and differences in skin bradykinins may be reflective of predator spectra rather than indicative of species relatedness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple bradykinin-related peptides including a novel bradykinin structural variant, (Val1)-bradykinin, have been identified from the defensive skin secretion of Guenther's frog, Hylarana guentheri by a tandem mass spectrometry method. Subsequently, four different preprobradykinin cDNAs, which encoded multiple bradykinin copies and its structural variants, were consistently cloned from a skin derived cDNA library. These preprobradykinin cDNAs showed little structural similarity with mammalian kininogens and the kininogens from the skin of toads, but have regions that are highly conserved in the kininogens from another ranid frog, Odorrana schmackeri. Alignment of these preprobradykinins revealed that preprobradykinin 1, 2 and 3 may derive from a single gene by alternative exon splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu1, Thr6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu1, Thr6, Trp8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B2-type receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretion has great potential for drug discovery and contributes hundreds of bioactive peptides including bradykinin-related peptides (BRPs). More than 50 BRPs have been reported in the last two decades arising from the skin secretion of amphibian species. They belong to the families Ascaphidae (1 species), Bombinatoridae (3 species), Hylidae (9 speices) and Ranidae (25 species). This paper presents the diversity of structural characteristics of BRPs with N-terminal, C-terminal extension and amino acid substitution. The further comparison of cDNA-encoded prepropeptides between the different species and families demonstrated that there are various forms of kininogen precursors to release BRPs and they constitute important evidence in amphibian evolution. The pharmacological activities of isolated BRPs exhibited unclear structure–function relationships, and therefore the scope for drug discovery and development is limited. However, their diversity shows new insights into biotechnological applications and, as a result, comprehensive and systematic studies of the physiological and pharmacological activities of BRPs from amphibian skin secretion are needed in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that the hypotensive sequela of envenomation by the South American viper, Bothrops jararaca, was mediated by peptides, represented a milestone in drug discovery research that led to the introduction of ACE inhibitors. These bradykinin-potentiating peptides (BPPs) have been found in the venoms of many species of viper and molecular cloning of biosynthetic precursors has revealed that each encodes several different BPPs in tandem with a single copy of a C-type natriuretic peptide (CNP) located at the C-terminus. Venoms of the African forest vipers (Atheris) have been poorly studied possibly because they do not represent a major danger to humans. However, initial studies have indicated that they contain some of the “classical” protein toxins of viper venoms and a novel class of peptide, the polyglycine/polyhistidine (pGpH) peptides. These peptides occur in several molecular forms with different numbers of repetitive glycine and histidine repeats. We have cloned the biosynthetic precursor of A. squamigera pGpH peptides from a venom-derived cDNA library and have confirmed that a single copy of CNP is located at the C-terminus and additionally that, like BPPs in other vipers, pGpH peptides are encoded in tandem within this single precursor. Solid phase peptide synthesis of pGpH peptides has proven to be extremely difficult but is progressing and acquisition of synthetic replicates of each peptide is a necessary prerequisite for systematic pharmacological characterisation as establishment of a biological function for these peptides remains elusive. pGpH peptides may prove to play a role as fundamental as that of the BPPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natriuretic peptides are common components of reptile venoms and molecular cloning of their biosynthetic precursors has revealed that in snakes, they co-encode bradykinin-potentiating peptides and in venomous lizards, some co-encode bradykinin inhibitory peptides such as the helokinestatins. The common natriuretic peptide/helokinestatin precursor of the Gila Monster, Heloderma suspectum, encodes five helokinestatins of differing primary structures. Here we report the molecular cloning of a natriuretic peptide/helokinestatin precursor cDNA from a venom-derived cDNA library of the Mexican beaded lizard (Heloderma horridum). Deduction of the primary structure of the encoded precursor protein from this cloned cDNA template revealed that it consisted of 196 amino acid residues encoding a single natriuretic peptide and five helokinestatins. While the natriuretic peptide was of identical primary structure to its Gila Monster (H. suspectum) homolog, the encoded helokinestatins were not, with this region of the common precursor displaying some significant differences to its H. suspectum homolog. The helokinestatin-encoding region contained a single copy of helokinestatin-1, 2 copies of helokinestatin-3 and single copies of 2 novel peptides, (Phe)(5)-helokinestatin-2 (VPPAFVPLVPR) and helokinestatin-6 (GPPFNPPPFVDYEPR). All predicted peptides were found in reverse phase HPLC fractions of the same venom. Synthetic replicates of both novel helokinestatins were found to antagonize the relaxing effect of bradykinin on rat tail artery smooth muscle. Thus lizard venom continues to provide a source of novel biologically active peptides. (C) 2011 Published by Elsevier Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthetic bradykinin antagonist peptides/peptoids have been powerful tools for delineating the roles of kinins in both normal physiology and in pathological states. Here, we report the identification of a novel, naturally occurring bradykinin B2 receptor antagonist peptide, helokinestatin, isolated and structurally characterized from the venoms of helodermatid lizards—the Gila monster (Heloderma suspectum) and the Mexican beaded lizard (Heloderma horridum). The primary structure of the peptide was established by a combination of microsequencing and mass spectroscopy as Gly-Pro-Pro-Tyr-Gln-Pro-Leu-Val-Pro-Arg (Mr 1122.62). A synthetic replicate of helokinestatin was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle, mediated by the B2 receptor sub-type, in a dose-dependent manner. Natural selection, that generates functional optimization of predatory reptile venom peptides, can potentially provide new insights for drug lead design or for normal physiological or pathophysiological processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Helokinestatins 1–5 represent a novel family of bradykinin antagonist peptides originally isolated from the venom of the Gila Monster, Heloderma suspectum. We found that they were encoded in tandem along with a single copy of C-type natriuretic peptide (CNP), by two different but almost identical biosynthetic precursors that were cloned from a venom-derived cDNA library. Here we have applied the same strategy to the venom of a related species, the Mexican beaded lizard, Heloderma horridum. Lyophilised venom was used as a surrogate tissue to generate a cDNA library that was interrogated with primers from the previous study and for reverse phase HPLC fractionation. The structure of a single helokinestatin precursor was obtained following sequencing of 20 different clones. The open-reading frame contained 196 amino acid residues, somewhat greater than the 177–178 residues of the corresponding helokinestatin precursors in H. suspectum. The reason for this difference in size was the insertion of an additional domain of 18 amino acid residues encoding an additional copy of helokinestatin-3. Helokinestatin-6 (GPPFNPPPFVDYEPR) was a novel peptide from this precursor identified in venom HPLC fractions. A synthetic replicate of this peptide antagonised the relaxation effect of bradykinin on rat arterial smooth muscle. The novel peptide family, the helokinestatins, have been shown to be present in the venom of H. horridum and to be encoded by a single precursor of different structure to those from H. suspectum. Studies such as this reveal the naturally-selected structures of bioactive peptides that have been optimised for purpose and provide the scientist with a natural analogue library for pharmacological investigation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.