23 resultados para BOROHYDRIDE ELECTROOXIDATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium iodide, [C(4)mim]I, has been investigated by cyclic voltammetry at a platinum microelectrode at varying concentrations in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(4)mim][NTf2]. Two oxidation peaks were observed. The first peak is assigned to the oxidation of iodide to triiodide, in an overall two-electron process: 3I(-)- 2e(-) -> I-3(-). At higher potentials, the electrogenerated triiodide oxidizes to iodine, in an overall one-electron process: I-3(-) - e(-) -> 3/2I(2). An average diffusion coefficient, D, for I- of 1.55 x 10(-11) m(2) s(-1) was obtained. A digital simulation program was used to simulate the voltammetric response, and kinetic parameters were successfully extracted. The parameters deduced from the simulation include D for I-, I-3(-), and I-2 and K-eq,K-2, the equilibrium constant for the reaction of iodide and iodine to form triiodide. Values for these parameters are of the same order as those previously published for the oxidation of Br- in the same RTIL [Allen et al. J. Electroanal. Chem. 2005, 575, 311]. Next, the cyclic voltammetry of five different inorganic iodide salts was studied by dissolving small amounts of the solid in [C(4)mim][NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 0.55, 1.14, 1.23, 1.44, and 1.33 x 10(-11) m(2) s(-1) and solubilities of 714, 246, 54, 83, and 36 mM for LiI, NaI, KI, RbI, and CsI, respectively. The slightly smaller diffusion coefficients for the XI salts (compared to [C(4)mim]I) may indicate that I- is ion-paired with Li+, Na+, K+, Rb+, and Cs+ in the RTIL medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of CO electrooxidation on different catalysts using in situ FTIR spectroscopy is presented. As electrode materials, polycrystalline Pt and Ru and a PtRu (50:50) alloy are used. The latter is one of the well-known active alloys for CO oxidation. The potential dependence of the band frequencies for the CO stretch indicates the formation of relatively compact islands at pure Pt and Ru, and a loose adlayer structure at the alloy. This loose structure has a positive effect on the rate of oxidative desorption. CO submonolayer coverages are obtained by integrating the absorption bands for CO produced upon oxidation of adsorbed CO. The band intensities measured at Pt, Ru, and PtRu indicate an influence of the substrate on the absorption coefficient of the CO stretch. It is shown that for a correct description of the catalyst properties toward CO electrooxidation, it must be distinguished between bulk and adsorbed CO. In contrast to the statement of most of the recent papers that a PtRu alloy (50:50) is the material with the highest activity for CO oxidation, it is demonstrated and rationalized in the present paper that for bulk CO oxidation pure Ru is the best catalyst. © 1999 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and electrooxidation of CO at a Ru(0001) electrode in perchloric acid solution have been investigated as a function of temperature, potential and time using in situ FTIR spectroscopy. This builds upon and extends previous work on the same system carried out at room temperature. As was observed at room temperature, both linear (CO) and 3-fold-hollow (CO) binding CO adsorbates (bands at 2000-2045 cm and 1768-1805 cm, respectively) were detected on the Ru(0001) electrode at 10°C and 50°C. However, the temperature of the Ru(0001) electrode had a significant effect upon the structure and behavior of the CO adlayer. At 10°C, the in-situ FTIR data showed that the adsorbed CO species still remain in rather compact islands up to ca. 1100 mV vs Ag/AgCl as the CO oxidation reaction proceeds, with oxidation occurring only at the boundaries between the CO and active surface oxide/hydroxide domains. However, the IR data collected at 50°C strongly suggest that the adsorbed CO species are present as relatively looser and weaker structures, which are more easily electro-oxidized. The temperature-, potential-, and coverage-dependent relaxation and compression of the CO adlayer at low coverages are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is essential to correctly determine the nature of the initial adsorbate in order to calculate the pathway for any given reaction. Recent literature provides conflicting information on the first step in the methanol decomposition pathway. This work sets out to establish what role the solution and the surface have to play in the initial adsorption-deprotonation process. Density functional theory (DFT) calculations, in combination with a cluster-continuum model approach are used to resolve the nature of the adsorbing species. We show that methanol is the dominant species in solution over methoxide, and also has a smaller barrier to adsorption. The nature of the surface species is revealed to be a methanol-OH complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrahexahedral Pd nanocrystals (THH Pd NCs) were prepared on a glassy carbon electrode using a programmed square-wave potential electrodeposition method, and modified by Bi adatoms with a range of coverages via the cyclic voltammetry method. The reactivity of the catalysts prepared towards ethanol electrooxidation reaction (EOR) was studied in alkaline medium at various temperatures and under other conditions that practical fuel cells operate. Significant activity enhancements were observed for the Bi-modified THH Pd NCs with an optimum Bi coverage (θBi) of around 0.68 being obtained. Furthermore, it was found that increasing temperature from 25 ºC to 60 ºC enhances the reactivity significantly. The general kinetics data of EOR on Bi-decorated and bare THH Pd NCs have also been obtained, from the activation energy calculated based on Arrhenius plots, and compared. At the optimum Bi coverage, an enhancement in the activity of almost 3 times was achieved, and the corresponding activation energy was found to be reduced significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mechanistic study of the direct oxidation of ammonia has been reported in several room-temperature ionic liquids (RTILs), namely, [C(4)mim][BF4], [C(4)mim][OTf], [C(2)mim][NTf2], [C(4)mim][NTf2], and [C(4)mim][PF6], on a 10 mu m diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). In contrast, NH4+ is formed first in [C(4)mim][PF6], followed by the protonated anion(s), HA. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The effect of changing the RTIL anion is discussed, and this may have implications in the defining of pK(a) in RTIL media. This work also has implications in the possible amperometric sensing of ammonia gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with a linear range from 10 to 95 ppm and corresponding limit-of-detection of 4.2 ppm achievable. Finally, the response of hydroquinone in the presence of ammonia has been examined in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide, [EMIM][N(Tf)(2)]. Analogous voltammetric waveshapes to that observed in DMF were obtained, thereby confirming the viability of the method in either DMF or [EMIM][N(Tf)(2)] as solvent. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reactivity of the Ru(0 0 0 1) electrode towards the adsorption and electrooxidation of CO and methanol has been studied by variable-temperature in situ FTIR spectroscopy in both perchloric acid and sodium hydroxide solution, and the results interpreted in terms of the surface chemistry of the Ru(0 0 0 1) electrode. Both linear (CO) and threefold hollow (CO) binding CO adsorbates (bands at 1970-2040 and 1770-1820 cm, respectively) were observed on the Ru(0 0 0 1) electrode in both 0.1 M HClO and 0.1 M NaOH solutions from the CO adsorption. In the acid solution, CO was detected as the main adsorbed species on Ru(0 0 0 1) surface over all the potential region studied. In contrast, in the alkaline solution, more CO than CO was detected at lower potentials, whilst increasing the potential resulted in the transformation of CO to CO. At higher potentials, the oxidation of the adsorbed CO took place via reaction with the active (1 × 1)-O oxide/hydroxide. It was found that no dissociative adsorption or electrooxidation of methanol took place at the Ru(0 0 0 1) at potentials below 900 mV vs Ag/AgCl in perchloric acid solution at both 20 and 55°C. However, in the alkaline solution, methanol did undergo dissociative adsorption, to form linearly adsorbed CO (CO) with little or no CO adsorbed at threefold hollow sites (CO) at both 20 and 55°C. Increasing the temperature from 20 to 55°C clearly facilitated the methanol dissociative adsorption to CO and also enhanced the electrooxidation of the CO. At the higher potentials, significant oxidation of methanol to CO and methyl formate in acid solution and to bicarbonate and formate in alkaline solution, was observed, which was attributed to the formation of an active RuO phase on the Ru(0 0 0 1) surface, in agreement with our previous studies. © 2003 Elsevier Ltd. All right reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ FTIR spectroscopic and electrochemical data and ex situ (emersion) electron diffraction (LEED) and RHEED) and Auger spectroscopic data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single-crystal surface in perchloric acid solution. In both the absence and the presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (e.g., from -80 to +200 mV vs Ag/AgCl), a (2 × 2)-O phase, which is unreactive toward CO oxidation, is formed, in agreement with UHV studies. Increasing the potential results in the formation of (3 × 1) and (1 × 1) phases at 410 and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (CO ) and three-fold-hollow (CO ) binding CO adsorbates (bands at 2000-2040 and 1770-1800 cm , respectively) were observed on the Ru(0001) electrode. The in situ FTIR data show that the adsorbed CO species remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the CO and O domains. At low CO coverages, reversible relaxation (at lower potentials) and compression (at higher potentials) of the CO adlayer were observed and rationalized in terms of the reduction and formation of surface O adlayers. The data obtained from the Ru(0001) electrode are in marked contrast to those observed on polycrystalline Ru, where only linear CO is observed.