5 resultados para BEACHES
Resumo:
Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.
Resumo:
The fundamental controls on the initiation and development of gravel-dominated deposits (beaches and barriers) on paraglacial coasts are particle size and shape, sediment supply, storm wave activity (primarily runup), relative sea-level (RSL) change, and terrestrial basement structure (primarily as it affects accommodation space). This paper examines the stochastic basis for barrier organisation as shown by variation in gravel barrier architecture. We recognise punctuated self-organisation of barrier development that is disrupted by short phases of barrier instability. The latter results from positive feedback causing barrier breakdown when sediment supply is exhausted. We examine published typologies for gravel barriers and advocate a consolidated perspective using rate of RSL change and sediment supply. We also consider the temporal variation in controls on barrier development. These are examined in terms of a simple behavioural model (BARCH) for prograding gravel barrier architecture and its sensitivity to such controls. The nature of macroscale (102–103 years) gravel barrier development, including inherited characteristics that influence barrier genesis, as well as forcing from changing RSL, sediment supply, headland control and barrier inertia, is examined in the context of long-surviving barriers along the southern England coastline.
Resumo:
Over recent years there have been substantial efforts to record and interpret the post-nesting movements of leatherback turtles (Dermochelys coriacea) breeding in tropical regions. Less well documented are the movements undertaken by individual turtles during the breeding season itself, or more specifically between sequential nesting events. Such movements are of interest for two reasons: (1) gravid female leatherbacks may range extensively into the territorial waters and nesting beaches of neighbouring countries, raising questions for conservationists and population ecologists; and (2) the magnitude of movements themselves help elucidate underlying reproductive strategies (e.g. whether to rest near to the nesting or forage extensively). Here, satellite relay data loggers are used (SRDLs) to detail the movements and behaviour of two female leatherback turtles throughout three consecutive inter-nesting intervals in the Commonwealth of Dominica, West Indies. Both near-shore residence and extensive inter-nesting movements were recorded, contrasting previous studies, with movements away from the nesting beach increasing towards the end of the nesting season. Using this behavioural study as a backdrop, the suitability of attaching satellite transmitters directly to the carapace was additionally explored as an alternative approach to conventional harness deployments. Specifically, the principal aims were to (1) gather empirical data on speed of travel and (2) assess dive performance (aerobic dive limit) to enable comparisons with turtles previously fitted with harnesses elsewhere in the Caribbean (n = 6 turtles; Grenada, WI). This produced mixed results with animals bearing directly attached transmitters travelling significantly faster (55.21 km day(-1): SD 6.68) than harnessed individuals (39.80 km day(-1); SD 6.19); whilst no discernable difference in dive performance could be found between the two groups of study animals. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed 'deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.
Resumo:
The North Atlantic is considered a stronghold for the critically endangered leatherback sea turtle. However, limited information exists regarding the movements of individuals to and from the seas off Europe's northwesterly fringe, an area where featherbacks have been historically sighted for the past 200 yr. Here, we used satellite telemetry to record the movements and behaviour of 2 individuals bycaught in fisheries off the southwest coast of Ireland. The turtle T1 (tagged 1 September 2005; female; tracked 375 d) immediately travelled south via Madeira and the Canaries, before residing in West African waters for 3 mo. In spring, T1 migrated north towards Newfoundland where transmissions ceased. T2 (29 June 2006; male; 233 d) travelled south for a short period before spending 66 d west of the Bay of Biscay, an area previously asserted as a high-use area for leatherbacks. This prolonged high latitude summer residence corresponded with a mesoscale feature evident from satellite imagery, with the implication that this turtle had found a rich feeding site. A marked change in dive behaviour was apparent as the turtle exited this feature and provided useful insights on leatherback diving behaviour. T2 headed south in October 2006, and performed the deepest-ever dive recorded by a reptile (1280 m) southwest of Cape Verde. Unlike T1, T2 swam southwest towards Brazil before approaching the major nesting beaches of French Guiana and Surinam. Importantly, these tracks document the movement of leatherbacks from one of the remotest foraging grounds in the North Atlantic. © Inter-Research 2008.