22 resultados para Automatic surveillence system
A new speech analysis system: ASSESS (Automatic Statistical Summary of Elementary Speech Structures)
Resumo:
Unmanned surface vehicles are becoming increasingly vital tools in a variety of maritime applications. Unfortunately, their usability is severely constrained by the lack of a reliable obstacle detection and avoidance system. In this article, one such experimental platform is proposed, which performs obstacle detection, risk assessment and path planning (avoidance) tasks autonomously in an integrated manner. The detection system is based on a vision-LIDAR (light detection and ranging) system, whereas a heuristic path planner is utilised. A unique property of the path planner is its compliance with the marine collision regulations. It is demonstrated through hardware-in-the-loop simulations that the proposed system can be useful for both uninhabited and manned vessels.
Resumo:
Melt viscosity is one of the main factors affecting product quality in extrusion processes particularly with regard to recycled polymers. However, due to wide variability in the physical properties of recycled feedstock, it is difficult to maintain the melt viscosity during extrusion of polymer blends and obtain good quality product without generating scrap. This research investigates the application of ultrasound and temperature control in an automatic extruder controller, which has ability to maintain constant melt viscosity from variable recycled polymer feedstock during extrusion processing. An ultrasonic modulation system has been developed and fitted to the extruder prior to the die to convey ultrasonic energy from a high power ultrasonic generator to the polymer melt. Two separate control loops have been developed to run simultaneously in one controller: the first loop controls the ultrasonic energy or temperature to maintain constant die pressure, the second loop is used to control extruder screw speed to maintain constant throughput at the extruder die. Time response and energy consumption of the control methods in real-time experiments are also investigated and reported this paper.
Resumo:
A system for the identification of power quality violations is proposed. It is a two-stage system that employs the potentials of the wavelet transform and the adaptive neurofuzzy networks. For the first stage, the wavelet multiresolution signal analysis is exploited to denoise and then decompose the monitored signals of the power quality events to extract its detailed information. A new optimal feature-vector is suggested and adopted in learning the neurofuzzy classifier. Thus, the amount of needed training data is extensively reduced. A modified organisation map of the neurofuzzy classifier has significantly improved the diagnosis efficiency. Simulation results confirm the aptness and the capability of the proposed system in power quality violations detection and automatic diagnosis
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
In this paper, a data driven orthogonal basis function approach is proposed for non-parametric FIR nonlinear system identification. The basis functions are not fixed a priori and match the structure of the unknown system automatically. This eliminates the problem of blindly choosing the basis functions without a priori structural information. Further, based on the proposed basis functions, approaches are proposed for model order determination and regressor selection along with their theoretical justifications. © 2008 IEEE.
Resumo:
The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.
Resumo:
Practical demonstration of the operational advantages gained through the use of a co-operating retrodirective array (RDA) basestation and Van Atta node arrangements is discussed. The system exploits a number of inherent RDA features to provide analogue real time multifunctional operation at low physical complexity. An active dual-conversion four element RDA is used as the power distribution source (basestation) while simultaneously achieving a receive sensitivity level of ??109 dBm and 3 dB automatic beam steering angle of ??45??. When mobile units are each equipped with a semi-passive four element Van Atta array, it is shown mobile device orientation issues are mitigated and optimal energy transfer can occur because of automatic beam formation resulting from retrodirective self-pointing action. We show that operation in multipath rich environments with or without line of sight acts to reduce average power density limits in the operating volume with high energy density occurring at mobile nodes sites only. The system described can be used as a full duplex ASK communications link, or, as a means for remote node charging by wireless means, thereby enhancing deployment opportunities between unstabilised moving platforms.