4 resultados para Automatic rule extraction
Resumo:
Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.
Resumo:
Accurate modelling of the internal climate of buildings is essential if Building Energy Management Systems (BEMS) are to efficiently maintain adequate thermal comfort. Computational fluid dynamics (CFD) models are usually utilised to predict internal climate. Nevertheless CFD models, although providing the necessary level of accuracy, are highly computationally expensive, and cannot practically be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. ROMs are shown to be adequately accurate with a total error below 5% and to retain satisfactory representation of the phenomena modelled. Each ROM has a time to solution under 20seconds, which opens the potential of their integration with BEMS, giving real-time physics-based building energy modelling. A parameter study was conducted to investigate the applicability of the extracted ROM to initial boundary conditions different from those from which it was extracted. The results show that the ROMs retained satisfactory total errors when the initial conditions in the room were varied by ±5°C. This allows the production of a finite number of ROMs with the ability to rapidly model many possible scenarios.
Resumo:
The importance and use of text extraction from camera based coloured scene images is rapidly increasing with time. Text within a camera grabbed image can contain a huge amount of meta data about that scene. Such meta data can be useful for identification, indexing and retrieval purposes. While the segmentation and recognition of text from document images is quite successful, detection of coloured scene text is a new challenge for all camera based images. Common problems for text extraction from camera based images are the lack of prior knowledge of any kind of text features such as colour, font, size and orientation as well as the location of the probable text regions. In this paper, we document the development of a fully automatic and extremely robust text segmentation technique that can be used for any type of camera grabbed frame be it single image or video. A new algorithm is proposed which can overcome the current problems of text segmentation. The algorithm exploits text appearance in terms of colour and spatial distribution. When the new text extraction technique was tested on a variety of camera based images it was found to out perform existing techniques (or something similar). The proposed technique also overcomes any problems that can arise due to an unconstraint complex background. The novelty in the works arises from the fact that this is the first time that colour and spatial information are used simultaneously for the purpose of text extraction.
Resumo:
In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.