2 resultados para Automatic Data Processing
Resumo:
BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.
METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.
RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).
CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.
Resumo:
This paper is part of a special issue of Applied Geochemistry focusing on reliable applications of compositional multivariate statistical methods. This study outlines the application of compositional data analysis (CoDa) to calibration of geochemical data and multivariate statistical modelling of geochemistry and grain-size data from a set of Holocene sedimentary cores from the Ganges-Brahmaputra (G-B) delta. Over the last two decades, understanding near-continuous records of sedimentary sequences has required the use of core-scanning X-ray fluorescence (XRF) spectrometry, for both terrestrial and marine sedimentary sequences. Initial XRF data are generally unusable in ‘raw-format’, requiring data processing in order to remove instrument bias, as well as informed sequence interpretation. The applicability of these conventional calibration equations to core-scanning XRF data are further limited by the constraints posed by unknown measurement geometry and specimen homogeneity, as well as matrix effects. Log-ratio based calibration schemes have been developed and applied to clastic sedimentary sequences focusing mainly on energy dispersive-XRF (ED-XRF) core-scanning. This study has applied high resolution core-scanning XRF to Holocene sedimentary sequences from the tidal-dominated Indian Sundarbans, (Ganges-Brahmaputra delta plain). The Log-Ratio Calibration Equation (LRCE) was applied to a sub-set of core-scan and conventional ED-XRF data to quantify elemental composition. This provides a robust calibration scheme using reduced major axis regression of log-ratio transformed geochemical data. Through partial least squares (PLS) modelling of geochemical and grain-size data, it is possible to derive robust proxy information for the Sundarbans depositional environment. The application of these techniques to Holocene sedimentary data offers an improved methodological framework for unravelling Holocene sedimentation patterns.