8 resultados para Audio-visual Speech Recognition, Visual Feature Extraction, Free-parts, Monolithic, ROI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research paper presents a five step algorithm to generate tool paths for machining Free form / Irregular Contoured Surface(s) (FICS) by adopting STEP-NC (AP-238) format. In the first step, a parametrized CAD model with FICS is created or imported in UG-NX6.0 CAD package. The second step recognizes the features and calculates a Closeness Index (CI) by comparing them with the B-Splines / Bezier surfaces. The third step utilizes the CI and extracts the necessary data to formulate the blending functions for identified features. In the fourth step Z-level 5 axis tool paths are generated by adopting flat and ball end mill cutters. Finally, in the fifth step, tool paths are integrated with STEP-NC format and validated. All these steps are discussed and explained through a validated industrial component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.