30 resultados para Atomic system


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a simple theoretical model to investigate the anomalous effects of opacity on spectral line ratios, as previously studied in elements such as Fe XV and Fe XVII. The model developed is general: it is not specific to a particular atomic system, thus giving applicability to a number of coronal and chromospheric plasmas; furthermore, it may be applied to a variety of astrophysically relevant geometries. The analysis is underpinned by geometrical arguments, and we outline a technique for it to be used as a tool for the explicit diagnosis of plasma geometry in distant astrophysical objects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double beam modulation is widely used in atomic collision experiments in the case where the noise arising froth each of the beams exceeds the measured signal. A method for minimizing the statistical uncertainty in a measured signal in a given time period is discussed, and a flexible modulation and counting system based on a low cost PIC microcontroller is described. This device is capable of modifying the acquisition parameters in real time during the course of an experimental run. It is shown that typical savings in data acquisition time of approximately 30% can be achieved using this optimized modulation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the semiclassical description of two-state atomic collisions to low energies for which the impact parameter treatment fails. The problem reduces to solving a system of first-order differential equations with coefficients whose semiclassical asymptotes experience the Stokes phenomenon in the complex coordinate plane. Primitive semiclassical and uniform Airy approximations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total energy tight-binding model with a basis of just one s state per atom is introduced. It is argued that this simplest of all tight-binding models provides a surprisingly good description of the structural stability and elastic constants of noble metals. By assuming inverse power scaling laws for the hopping integrals and the repulsive pair potential, it is shown that the density matrix in a perfect primitive crystal is independent of volume, and structural energy differences and equations of state are then derived analytically. The model is most likely to be of use when one wishes to consider explicitly and self-consistently the electronic and atomic structures of a generic metallic system, with the minium of computation expense. The relationship to the free-electron jellium model is described. The applicability of the model to other metals is also considered briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hafnium oxide films have been deposited at 250 °C on silicon and germanium substrates by atomic layer deposition (ALD), using tetrakis-ethylmethylamino hafnium (TEMAH) and water vapour as precursors in a modified Oxford Instruments PECVD system. Self-limiting monolayer growth has been verified, characterised by a growth rate of 0.082 nm/ cycle. Layer uniformity is approximately within ±1% of the mean value. MOS capacitors have been fabricated by evaporating aluminium electrodes. CV analysis has been used to determine the bulk and interface properties of the HfO 2, and their dependence on pre-clean schedule, deposition conditions and post-deposition annealing. The dielectric constant of the HfO 2 is typically 18. On silicon, best results are obtained when the HfO 2 is deposited on a chemically oxidised hydrophilic surface. On germanium, best results are obtained when the substrate is nitrided before HfO 2 deposition, using an in-situ nitrogen plasma treatment. © Springer Science+Business Media, LLC 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss complementarity relations in a bipartite continuous variable system. Building up from the work done on discrete d-dimensional systems, we prove that for symmetric two-mode states, quantum complementarity relations can be put in a simple relation with the elements of the variance matrix. When this condition is not satisfied, such a connection becomes non-trivial. Our investigation is the first step towards an operative characterization of the complementarity in a scenario that has not been investigated so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the conditions for probing the environment affecting an inaccessible system by means of continuous interaction and measurements performed only on a probe. The scheme exploits the statistical properties of the probe at its steady state and simple data postprocessing. Our results, highlighting the roles played by interaction and entanglement in this process, are both pragmatically relevant and fundamentally interesting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monte Carlo simulation of chemical ordering kinetics in nano-layered L10 AB binary intermetallics was performed. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L10 c-variant superstructure with monoatomic planes parallel to the surface and off-plane easy magnetization. The layers, originally perfectly ordered in a c-variant of the L10 superstructure, showed homogeneous disordering running in parallel with a spontaneous re-orientation of the monoatomic planes leading to a mosaic microstructure composed of a- and b-L10-variant domains. The domains nucleated heterogeneously on the surface of the layer and grew discontinuously inwards its volume. Finally, the domains relaxed towards an equilibrium microstructure of the system. Two “atomistic-scale” processes: (i) homogeneous disordering and (ii) nucleation of the a- and b-L10-variant domains showed characteristic time scales. The same was observed for the domain microstructure relaxation. The discontinuous domain growth showed no definite driving force and proceeded due to thermal fluctuations. The above complex structural evolution has recently been observed experimentally in epitaxially deposited thin films of FePt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma diagnostics of atmospheric plasmas is a key tool in helping to understand processing performance issues. This paper presents an electrical, optical and thermographic imaging study of the PlasmaStream atmospheric plasma jet system. The system was found to exhibit three operating modes; one constricted/localized plasma and two extended volume plasmas. At low power and helium flows the plasma is localized at the electrodes and has the electrical properties of a corona/filamentary discharge with electrical chaotic temporal structure. With increasing discharge power and helium flow the plasma expands into the volume of the tube, becoming regular and homogeneous in appearance. Emission spectra show evidence of atomic oxygen, nitric oxide and the hydroxyl radical production. Plasma activated gas temperature deduced from the rotational temperature of nitrogen molecules was found to be of order of 400 K: whereas thermographic imaging of the quartz tube yielded surface temperatures between 319 and 347 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).