6 resultados para Asymptotically optimal policy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we investigate the remanufacturing problem of pricing single-class used products (cores) in the face of random price-dependent returns and random demand. Specifically, we propose a dynamic pricing policy for the cores and then model the problem as a continuous-time Markov decision process. Our models are designed to address three objectives: finite horizon total cost minimization, infinite horizon discounted cost, and average cost minimization. Besides proving optimal policy uniqueness and establishing monotonicity results for the infinite horizon problem, we also characterize the structures of the optimal policies, which can greatly simplify the computational procedure. Finally, we use computational examples to assess the impacts of specific parameters on optimal price and reveal the benefits of a dynamic pricing policy. © 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In remanufacturing, the supply of used products and the demand for remanufactured products are usually mismatched because of the great uncertainties on both sides. In this paper, we propose a dynamic pricing policy to balance this uncertain supply and demand. Specifically, we study a remanufacturer’s problem of pricing a single class of cores with random price-dependent returns and random demand for the remanufactured products with backlogs. We model this pricing task as a continuous-time Markov decision process, which addresses both the finite and infinite horizon problems, and provide managerial insights by analyzing the structural properties of the optimal policy. We then use several computational examples to illustrate the impacts of particular system parameters on pricing policy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of self-healing in networks that are reconfigurable in the sense that they can change their topology during an attack. Our goal is to maintain connectivity in these networks, even in the presence of repeated adversarial node deletion, by carefully adding edges after each attack. We present a new algorithm, DASH, that provably ensures that: 1) the network stays connected even if an adversary deletes up to all nodes in the network; and 2) no node ever increases its degree by more than 2 log n, where n is the number of nodes initially in the network. DASH is fully distributed; adds new edges only among neighbors of deleted nodes; and has average latency and bandwidth costs that are at most logarithmic in n. DASH has these properties irrespective of the topology of the initial network, and is thus orthogonal and complementary to traditional topology- based approaches to defending against attack. We also prove lower-bounds showing that DASH is asymptotically optimal in terms of minimizing maximum degree increase over multiple attacks. Finally, we present empirical results on power-law graphs that show that DASH performs well in practice, and that it significantly outperforms naive algorithms in reducing maximum degree increase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) uses only O(√ √nlog<sup>3/2</sup>n) messages to elect a unique leader (with high probability). When considering the "explicit" variant of leader election where eventually every node knows the identity of the leader, our algorithm yields the asymptotically optimal bounds of O(1) rounds and O(. n) messages. This algorithm is then extended to one solving leader election on any connected non-bipartite n-node graph G in O(τ(. G)) time and O(τ(G)n√log<sup>3/2</sup>n) messages, where τ(. G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, we present an almost matching lower bound for randomized leader election, showing that Ω(n) messages are needed for any leader election algorithm that succeeds with probability at least 1/. e+. ε, for any small constant ε. >. 0. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of the SPHERE study is to design, implement and evaluate tailored practice and personal care plans to improve the process of care and objective clinical outcomes for patients with established coronary heart disease (CHD) in general practice across two different health systems on the island of Ireland.CHD is a common cause of death and a significant cause of morbidity in Ireland. Secondary prevention has been recommended as a key strategy for reducing levels of CHD mortality and general practice has been highlighted as an ideal setting for secondary prevention initiatives. Current indications suggest that there is considerable room for improvement in the provision of secondary prevention for patients with established heart disease on the island of Ireland. The review literature recommends structured programmes with continued support and follow-up of patients; the provision of training, tailored to practice needs of access to evidence of effectiveness of secondary prevention; structured recall programmes that also take account of individual practice needs; and patient-centred consultations accompanied by attention to disease management guidelines.

Methods: SPHERE is a cluster randomised controlled trial, with practice-level randomisation to intervention and control groups, recruiting 960 patients from 48 practices in three study centres (Belfast, Dublin and Galway). Primary outcomes are blood pressure, total cholesterol, physical and mental health status (SF-12) and hospital re-admissions. The intervention takes place over two years and data is collected at baseline, one-year and two-year follow-up. Data is obtained from medical charts, consultations with practitioners, and patient postal questionnaires. The SPHERE intervention involves the implementation of a structured systematic programme of care for patients with CHD attending general practice. It is a multi-faceted intervention that has been developed to respond to barriers and solutions to optimal secondary prevention identified in preliminary qualitative research with practitioners and patients. General practitioners and practice nurses attend training sessions in facilitating behaviour change and medication prescribing guidelines for secondary prevention of CHD. Patients are invited to attend regular four-monthly consultations over two years, during which targets and goals for secondary prevention are set and reviewed. The analysis will be strengthened by economic, policy and qualitative components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the dynamic optimization problem for not-for-profit financial institutions (NFPs) that maximize consumer surplus, not profits. We characterize the optimal dynamic policy and find that it involves credit rationing. Interest rates set by mature NFPs will typically be more favorable to customers than market rates, as any surplus is distributed in the form of interest rate subsidies, with credit rationing being required to prevent these subsidies from distorting loan volumes from their optimal levels. Rationing overcomes a fundamental problem in NFPs; it allows them to distribute the surplus without distorting the volume of activity from the efficient level.