146 resultados para Assignment problem
Resumo:
A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.
Resumo:
Incidence calculus is a mechanism for probabilistic reasoning in which sets of possible worlds, called incidences, are associated with axioms, and probabilities are then associated with these sets. Inference rules are used to deduce bounds on the incidence of formulae which are not axioms, and bounds for the probability of such a formula can then be obtained. In practice an assignment of probabilities directly to axioms may be given, and it is then necessary to find an assignment of incidence which will reproduce these probabilities. We show that this task of assigning incidences can be viewed as a tree searching problem, and two techniques for performing this research are discussed. One of these is a new proposal involving a depth first search, while the other incorporates a random element. A Prolog implementation of these methods has been developed. The two approaches are compared for efficiency and the significance of their results are discussed. Finally we discuss a new proposal for applying techniques from linear programming to incidence calculus.
Resumo:
We introduce a novel dual-stage algorithm for online multi-target tracking in realistic conditions. In the first stage, the problem of data association between tracklets and detections, given partial occlusion, is addressed using a novel occlusion robust appearance similarity method. This is used to robustly link tracklets with detections without requiring explicit knowledge of the occluded regions. In the second stage, tracklets are linked using a novel method of constraining the linking process that removes the need for ad-hoc tracklet linking rules. In this method, links between tracklets are permitted based on their agreement with optical flow evidence. Tests of this new tracking system have been performed using several public datasets.