115 resultados para Assembly vectors
Resumo:
Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.
Resumo:
A versatile approach for the enantioselective synthesis of functionalised beta-hydroxy N-acetylcysteamine thiol esters has been developed which allows the facile incorporation of isotopic labels. It has been shown that a remarkable reversal of selectivity occurs in the titanium mediated aldol reaction of the acyloxazolidone intermediate using either (S)- or (R)-tert-butyldimethylsilyloxybutanal. The aldol products are valuable intermediates in the synthesis of 4-hydroxy-6-substituted gamma-lactones.
Resumo:
A novel open-ended waveguide cavity resonator for the microwave curing of bumps, underfills and encapsulants is described. The open oven has the potential to provide fast alignment of devices during flip-chip assembly, direct chip attach, surface mount assembly or wafer-scale level packaging. The prototype microwave oven was designed to operate at X-band for ease of testing, although a higher frequency version is planned. The device described in the paper takes the form of a waveguide cavity resonator. It is approximately square in cross-section and is filled with a low-loss dielectric with a relative permittivity of 6. It is excited by end-fed probes in order to couple power preferentially into the TM3,3,k mode with the object of forming nine 'hot-spots' in the open end. Low power tests using heat sensitive film demonstrate clearly that selective heating in multiple locations in the open end of the oven is achievable.
Resumo:
The implementation of effective time analysis methods fast and accurately in the era of digital manufacturing has become a significant challenge for aerospace manufacturers hoping to build and maintain a competitive advantage. This paper proposes a structure oriented, knowledge-based approach for intelligent time analysis of aircraft assembly processes within a digital manufacturing framework. A knowledge system is developed so that the design knowledge can be intelligently retrieved for implementing assembly time analysis automatically. A time estimation method based on MOST, is reviewed and employed. Knowledge capture, transfer and storage within the digital manufacturing environment are extensively discussed. Configured plantypes, GUIs and functional modules are designed and developed for the automated time analysis. An exemplar study using an aircraft panel assembly from a regional jet is also presented. Although the method currently focuses on aircraft assembly, it can also be well utilized in other industry sectors, such as transportation, automobile and shipbuilding. The main contribution of the work is to present a methodology that facilitates the integration of time analysis with design and manufacturing using a digital manufacturing platform solution.