63 resultados para Assemblage spontané
Resumo:
Data from a hierarchical study of four Zostera marina beds in Wales were used to identify the spatial scales of variation in epiphyte assemblages. There were significant within and among bed differences in assemblage structure. The differences in assemblage structure with spatial scale generally persisted when species identifications were aggregated into functional groups. There was also significant within and among bed variability in Zostera density and average length. Local variations in Zostera canopy variables at the quadrat scale (total leaf length, average leaf length and leaf density per quadrat) were not related to epiphyte species richness nor to the structure of the assemblage. In contrast, individual leaf length was significantly related to species richness in two of the beds and the structure of epiphyte assemblages was always related to individual leaf lengths. The absence of links between quadrat scale measurements of canopy variables and assemblage structure may reflect the high turnover of individual Zostera leaves. Experimental work is required to discriminate further between the potential causes of epiphyte assemblage variation within and between beds. No bed represented a refuge where a rare species was abundant. If a species was uncommon at the bed scale, it was also uncommon in beds where it occurred. The heterogeneous assemblages found in this study suggest that a precautionary approach to conservation is advisable.
Resumo:
Fisheries can have profound effects on epifaunal community function and structure. We analysed the results from five dive surveys (1975–1976, 1980, 1983, 2003 and 2007), taken in a Special Area of Conservation, Strangford Lough, Northern Ireland before and after a ten year period of increased trawling activity between 1985 and 1995. There were no detectable differences in the species richness or taxonomic distinctiveness before (1975–1983) and after (2003–2007) this period. However, there was a shift in the epifaunal assemblage between the surveys in 1975–1983 and 2003–2007. In general, the slow-moving, or sessile, erect, filterfeeders were replaced by highly mobile, swimming, scavengers and predators. There were declines in the frequency of the fished bivalve Aequipecten opercularis and the non-fished bivalves Modiolus modiolus and Chlamys varia and some erect sessile invertebrates between the surveys in 1975–1983 and 2003–2007. In contrast, there were increases in the frequency of the fished and reseeded bivalves Pecten maximus and Ostrea edulis, the fished crabs Cancer pagurus and Necora puber and the non-fished sea stars Asterias rubens, Crossaster papposus and Henricia oculata between the surveys in 1975–1983 and 2003–2007. We suggest that these shifts could be directly and indirectly attributed to the long-termimpacts of trawl fishing gear, although increases in the supply of discarded bait and influxes of sediment may also have contributed to changes in the frequency of some taxa. These results suggest that despite their limitations, historical surveys and repeat sampling over long periods can help to elucidate the inferred patterns in the epifaunal community. The use of commercial fishing gear was banned from two areas in Strangford Lough in 2011, making it a model ecosystem for assessing the long-term recovery of the epifaunal community from the impacts of mobile and pot fishing gear.
Resumo:
Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.
Resumo:
Heritable variation in plant secondary compounds in dominant species has been hypothesised to effect ecosystem function and the structure of associated assemblages of plants, microbes and animals. The functioning of this extended phenotype in relation to the understorey vegetation composition was tested within a boreal forest system dominated by Pinus sylvestris which contains a range of monoterpenes, the composition of which is largely under genetic control. A variance partitioning approach was adopted to identify the relative importance of tree chemistry, environment, spatial location and tree architecture in controlling the distribution of species in the ground flora under individual trees. The monoterpene composition of the pine needles appeared to contribute significantly to controlling understorey vegetation composition, but was less important than environmental factors, though similar to spatial factors. Thus there appears to be a link between variation in the chemical composition of the single, dominant tree species within this system and the pattern of occurrence and abundance in other species at the same trophic level.
Resumo:
ecosystems. Coastal oceanic upwelling, for example, has been associated with elevatedbiomass and abundance patterns of certain functional groups, e.g., corticated macroalgae.In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthiccomposition, structure and trophic ecology across eighteen shores varying in theirproximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scalesof >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmedby the stable isotope values (δ13C and δ15N) of consumers, including a dominantsuspension feeder, grazers, and their putative resources of POM, epilithic biofilm, andmacroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel,Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previousstudies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation,ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Ourresults showed macroalgal assemblage composition, and benthic consumer assemblagestructure, varied significantly with the intertidal influence of coastal upwelling, especiallycontrasting bays and coastal headlands. Coastal topography also separated differences inconsumer resource use. This suggested that coastal upwelling, itself driven by coastlinetopography, influences intertidal communities by advecting nearshore phytoplankton populationsoffshore and cooling coastal water temperatures. We recommend the isotopic valuesof benthic organisms, specifically long-lived suspension feeders, as in situ alternativesto offshore measurements of upwelling influence
Footprints in the sand: a persistent spatial impression of fishing in a mobile groundfish assemblage
Resumo:
Fishing is well known to curtail the size distribution of fish populations. This paper reports the discovery of small-scale spatial patterns in length appearing in several exploited species of Celtic Sea demersal 'groundfish'. These patterns match well with spatial distributions of fishing activity, estimated from vessel monitoring records taken over a period of 6 years, suggesting that this 'mobile' fish community retains a persistent impression of local-scale fishing pressure. An individual random-walk model of fish movement best matched these exploitation 'footprints' with individual movement rates set to <35 km per year. We propose that Celtic Sea groundfish may have surprisingly low movement rates for much of the year, such that fishing impact is spatially heterogeneous and related to local fishing intensity.
Resumo:
Although interactions between seaweeds and sponges have been studied in detail, general information concerning the whole epibiontic algal assemblage associated with a sponge species is virtually non-existent. We present here the first study in which the macroalgal community associated with a sponge, Haliclona indistincta (Bowerbank), was examined in detail. In the period October 2009-September 2010, the seaweed assemblage epibiontic on H. indistincta at a site of the Irish West coast was composed of 66 algal taxa (48 red algae, 7 green algae, 11 brown algae). The red algae Gelidium spinosum and Rhodothamniella floridula were the only epibionts associated with H. indistincta for the whole annual cycle. Most of the algal epibionts were filamentous species, which colonized the surface of the sponge and did not penetrate deeply into it. The algal assemblage was most abundant and species-diverse in the period late winter-spring; multivariate analyses revealed a significant variation of the community on the temporal scale of season and sampling date (weeks to months). The results indicate that the algal communities associated with sponges may be very diverse, showing that this type of assemblage deserves further detailed studies. © 2012 Elsevier B.V.
Resumo:
1. As many species of marine benthic invertebrates have a limited capacity for movement as adults, dispersal mode is often considered as a determinant of geographical ranges, genetic structure and evolutionary history. Species that reproduce without a larval stage can only disperse by floating or rafting. It is proposed that the colonization processes associated with such direct developing species result in spatial distributions that show relatively greater fine scale patchiness than the distributions of species with a larval dispersal stage. This hypothesis was tested by collecting molluscs at different spatial scales in the Isle of Man. 2. Spatial distribution patterns supported the predictions based on dispersal mode. Estimated variance components for species with larval dispersal suggested that the majority of the spatial variation was associated with variation between shores. In comparison, there was relatively more variability within shores for abundance counts of species with direct development. 3. Multivariate analyses reflected the univariate results. An assemblage of direct developers provided a better discrimination between sites (100 m separation) but the group of species with larval dispersal gave a clearer separation of shores (separated by several km). 4. The fine scale spatial structure of direct developing species was reflected in higher average species diversity within quadrats. Species richness also reflected dispersal mode, with a higher fraction of the regional species pool present for direct developers in comparison to species with larval dispersal. This may reflect the improved local persistence of taxa that avoid the larval dispersal stage.
Resumo:
During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollenbased climate reconstructions over the Late Glacial–early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.
Resumo:
Formaldehyde run-off was an unintended impact of the anthrax decontamination procedure on the island of Gruinard. The death of intertidal organisms was observed where formaldehyde reached the shore during 1986. The extent to which shores on Gruinard have recovered was assessed with survey work in 2000. Recovery estimates were based on the hypothesis that the process of recolonization is partly dependent on species' dispersal capability. Underdevelopment of the assemblage of species lacking planktonic dispersal stages (direct developers) is therefore evidence that the process of recolonization is ongoing, rather than complete. A novel multivariate test showed that, when comparing quadrats from Gruinard and nearby mainland shores, assemblages of direct developing molluscs were significantly more distinct than assemblages of molluscs with planktonic dispersal stages. The average densities of species with direct development were generally lower on Gruinard than on mainland shores. While some species with direct development have similar densities on Gruinard and on the surrounding shores, the recovery of the overall assemblage was still incomplete after 14 years. In contrast, the harvested species, Littorina littorea, appeared to benefit from the absence of humans visiting Gruinard's shores. Populations of L. littorea on Gruinard contained significantly higher proportions of large individuals. Depending on the dispersal capabilities of different species, Gruinard is either still in recovery or acts as a reserve.
Resumo:
The role of limpet grazing in preventing the development of algal canopies is a recurrent theme in intertidal ecology. Less is known about interactions of limpets with the long-term dynamics of established canopies. Aerial photographs indicate that intertidal canopy cover has declined over the past 44 yr in Strangford Lough, Northern Ireland. There has been a loss of the previously continuous cover of Ascophyllum nodosum (L.) Le Jolis in the mid-shore. A barnacles dominated assemblage now fills gaps in the A. nodosum canopy. The rates at which barnacle patches become established and grow have increased since 1990. Changes in canopy cover have been accompanied by increases in limpet densities since the 1980s. Measurements between 2003 and 2004 showed no increase in length of A. nodosum fronds when limpets Patella vulgata had access to the algal holdfasts. In contrast, when limpets were experimentally excluded from the holdfasts, there was net frond growth. In the Isle of Man, which is climatically similar to Strangford Lough but has fewer limpets, growth occurred regardless of limpet grazing. The breaking force for A. nodosum declined with increasing local densities of limpets. A. nodosum is a sheltered shore species, potentially vulnerable to changes in wave exposure. There is no evidence, however, that Strangford Lough has become windier over the past 3 decades. Variation in wave exposure among locations within the lough was not related to rates of barnacle patch creation or expansion, Limpet population density has increased following a series of mild winters. Climate change may have a role in causing canopy loss, not by direct effects on the limpet populations.